Use Code TRYNOW15 for a One-Time, Extra 15% OFF at KodeKloud

DevOps Template Library

Explore Docker: Begin Your Hands-On Learning Adventure!

Dockerfile for LAMP Stack (Linux, Apache, MySQL, PHP)

This Dockerfile sets up a LAMP stack in a Docker container, ideal for running PHP web applications. It uses an official PHP image with Apache and installs MySQL extensions, ensuring your application connects to MySQL databases effortlessly. Just add your PHP code to the src directory, build, and run the container to deploy your application quickly.

Dockerfile:

FROM php:7.4-apache
RUN docker-php-ext-install mysqli pdo pdo_mysql
COPY src/ /var/www/html/
EXPOSE 80

Instructions:

  • Place this Dockerfile in the root directory of your PHP project.
  • Ensure you have a src directory containing your PHP code.
  • Build the image using docker build -t my-lamp-app.
  • Run the container with docker run -p 80:80 my-lamp-app.

Dockerfile for MEAN Stack (MongoDB, Express.js, Angular, Node.js)

This Dockerfile is a great starting point for efficiently deploying MEAN stack web applications. It uses the official Node.js image, installs your dependencies, and sets everything up for your app to run. Build and run this Docker image, and your application will be ready on port 3000. 

Dockerfile:

FROM node:14
WORKDIR /usr/src/app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD [ "npm", "start" ]

The additional files index.js and package.json are essential for running your MEAN stack application within the Docker container, tailored to a Node.js environment. These are sample files designed to demonstrate a basic container setup for a Node.js application. Remember, these files are just starting points. You should replace or extend them with your own code to build a fully functional web application tailored to your requirements.

index.js

const http = require('http');
 
const server = http.createServer((req, res) => {
  res.statusCode = 200;
  res.setHeader('Content-Type', 'text/plain');
  res.end('Hello World\n');
});

const PORT = process.env.PORT || 3000;
server.listen(PORT, () => {
  console.log(`Server running on port ${PORT}`);
});

package.json

{
  "name": "simple-node-app",
  "version": "1.0.0",
  "description": "A simple Node.js application",
  "main": "index.js",
  "scripts": {
    "start": "node index.js"
  },
  "author": "KodeKloud",
  "license": "ISC"
}

Instructions:

  • Place this Dockerfile in the root of your Node.js (Express) project.
  • Ensure your Node.js application listens on port 3000.
  • Build the image with docker build -t my-mean-app.
  • Run the container using docker run -p 3000:3000 my-mean-app.

Discover Our Playgrounds: Start Your Tech Exploration Journey!

Basic Deployment and Service YAML


The Deployment.yaml creates a Kubernetes deployment with three replicas of an application for high availability. The Service.yaml exposes these replicas externally on port 80 using a LoadBalancer, facilitating access to the application. This setup ensures the application is scalable, resilient, and accessible.

Deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
spec:
  replicas: 3
  selector:
    matchLabels:
      app: my-app
  template:
    metadata:
      labels:
        app: my-app
    spec:
      containers:
      - name: my-app
        image: my-app:latest
        ports:
        - containerPort: 80

Service.yaml:

apiVersion: v1
kind: Service
metadata:
  name: my-loadbalancer-service
spec:
  type: LoadBalancer
  selector:
    app: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

Instructions:

  • Replace my-app:latest with your container image.
  • Apply these configurations using kubectl apply -f Deployment.yaml and kubectl apply -f Service.yaml.

Notes:

  • This setup creates a basic deployment with 3 replicas of your app.
  • The service exposes the app on port 80 using a LoadBalancer.

StatefulSet Template for Database Applications

This template includes specifications for a StatefulSet that manages a database application (like PostgreSQL or MongoDB). It should define persistent volume claims for data storage, appropriate environment variables, liveness and readiness probes, and a headless service for stable networking.

StatefulSet.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: <database-name>
spec:
  serviceName: "<database-service>"
  replicas: 3
  selector:
    matchLabels:
      app: <database-label>
  template:
    metadata:
      labels:
        app: <database-label>
    spec:
      containers:
      - name: <database-name>
        image: <database-image>
        ports:
        - containerPort: <database-port>
        volumeMounts:
        - name: <volume-name>
          mountPath: <data-directory>
  volumeClaimTemplates:
  - metadata:
      name: <volume-name>
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi

Instructions:

  • Replace <database-name>, <database-service>, <database-label>, <database-image>, <database-port>, <volume-name>, and <data-directory> with your specific application details.
  • Apply this configuration using kubectl apply -f StatefulSet.yaml.

Notes:

  • This template sets up a StatefulSet for a database application with persistent storage.
  • It ensures ordered, graceful deployment and scaling, and maintains stable network identifiers.

Horizontal Pod Autoscaler (HPA) Template:

Horizontal Pod Autoscalers automatically scale the number of pods in a deployment, replicaset, or statefulset based on observed CPU utilization or other select metrics. This template would help users quickly set up an HPA for their application, ensuring efficient resource usage and better handling of load variations.

HPA.yaml

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: <hpa-name>
  namespace: <namespace>
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: <deployment-name>
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50

Instructions:

  • Replace <hpa-name>, <namespace>, <deployment-name> with your specific application details.
  • Adjust minReplicas, maxReplicas, and averageUtilization based on your scalability needs.
  • Deploy using kubectl apply -f HPA.yaml.

Notes:

  • This HPA automatically scales the number of pods in the specified deployment based on observed CPU utilization.
  • It ensures efficient resource usage and helps in managing load variations.

Network Policy Template:

Network policies are crucial for securing Kubernetes networks. They define how pods can communicate with each other and other network endpoints. This template would provide a basic structure for creating a network policy to control ingress and egress traffic for a set of pods.

NetworkPolicy.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: <policy-name>
  namespace: <namespace>
spec:
  podSelector:
    matchLabels:
      app: <app-label>
  policyTypes:
  - Ingress
  - Egress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: <source-app-label>
    ports:
    - protocol: TCP
      port: <port>
  egress:
  - to:
    - podSelector:
        matchLabels:
          app: <destination-app-label>
    ports:
    - protocol: TCP
      port: <port>

Instructions:

  • Fill in <policy-name>, <namespace>, <app-label>, <source-app-label>, <destination-app-label>, and <port> with appropriate values.
  • Deploy the policy with kubectl apply -f NetworkPolicy.yaml.

Notes:

  • This template creates a network policy to control ingress and egress traffic for a set of pods.
  • It enhances the security of your Kubernetes cluster by restricting network access.

Ingress Controller Template:

An Ingress controller is a vital component in a Kubernetes cluster, as it manages access to services from outside the Kubernetes network. This template would help in setting up an Ingress controller, like Nginx or Traefik, along with basic routing rules.

Ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: <ingress-name>
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: <app-domain>
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: <service-name>
            port:
              number: <service-port>

Instructions:

  • Modify <ingress-name>, <app-domain>, <service-name>, and <service-port> to suit your application.
  • Deploy the Ingress resource with kubectl apply -f Ingress.yaml.

Notes:

  • This template sets up an Ingress resource for managing external access to services in the cluster, typically via an HTTP or HTTPS route.
  • It requires an Ingress controller to be effectively functioning in your cluster.

Experience Helm: Launch into Hands-On Kubernetes Management!

Basic Helm Chart Template

This Helm chart template provides a standardized and customizable way to deploy applications to Kubernetes. It includes a Chart.yaml file for chart metadata, a values.yaml file for configuration values, and templated Kubernetes manifest files for a deployment and service.

Chart.yaml:

apiVersion: v2
name: my-app
version: 0.1.0

Values.yaml:

replicaCount: 3
image:
  repository: my-app
  tag: "latest"
  pullPolicy: IfNotPresent
service:
  type: LoadBalancer
  port: 80

templates/deployment.yaml and templates/service.yaml:

  • Use the same content as in the Kubernetes YAML files, but replace hard-coded values with templated values from values.ya

Instructions:

  • Create a directory for your Helm chart and place Chart.yaml and values.yaml inside.
  • Create a templates directory within your chart directory.
  • Place the Kubernetes deployment and service YAML files into the templates directory, modified for Helm templating.
  • Install the Helm chart to your Kubernetes cluster using helm install my-app-chart ./my-app-chart.

Notes:

  • Helm charts provide a more manageable way of deploying applications to Kubernetes by templating resource definitions and packaging them.
  • Customize values.yaml according to your application's needs, such as image, replica count, and service type.
  • Ensure you have Helm installed and configured to communicate with your Kubernetes cluster.
Experiment with Terraform on AWS: Start Building Now

This example creates a basic AWS network infrastructure, an EC2 instance, and an S3 bucket. Ensure you have the latest version of Terraform installed and configured with your AWS credentials.

AWS Terraform Template:

provider "aws" {
  region = "us-west-2"
}

resource "aws_vpc" "example_vpc" {
  cidr_block = "10.0.0.0/16"
  enable_dns_hostnames = true

  tags = {
    Name = "example-vpc"
  }
}

resource "aws_subnet" "example_subnet" {
  vpc_id     = aws_vpc.example_vpc.id
  cidr_block = "10.0.1.0/24"
  availability_zone = "us-west-2a"

  tags = {
    Name = "example-subnet"
  }
}

resource "aws_internet_gateway" "example_igw" {
  vpc_id = aws_vpc.example_vpc.id

  tags = {
    Name = "example-igw"
  }
}

resource "aws_instance" "example_instance" {
  ami           = "ami-0c55b159cbfafe1f0"  # Update with latest AMI
  instance_type = "t2.micro"
  subnet_id     = aws_subnet.example_subnet.id

  tags = {
    Name = "example-instance"
  }
}

resource "aws_s3_bucket" "example_bucket" {
  bucket = "my-example-bucket"  # Update with a unique bucket name
  acl    = "private"
}

Instructions:

  • Save this script as main.tf.
  • Run terraform init to initialize Terraform.
  • Run terraform plan to see the execution plan.
  • Run terraform apply to create the resources.

Notes:

  • The AMI ID ami-0c55b159cbfafe1f0 is a placeholder. Replace it with the latest relevant AMI ID for your region.
  • The S3 bucket name must be globally unique
Learn Ansible: Dive Into Automation with Hands-On Practice!

This example will focus on configuring an Apache web server on an Ubuntu-based system. Ensure you have Ansible installed and you can connect to your target server(s) via SSH.

- name: Setup Apache Web Server
  hosts: your_web_servers  # Replace with your server group or individual server
  become: yes
  tasks:
    - name: Install Apache
      apt:
        name: apache2
        state: present
        update_cache: yes

    - name: Start Apache and enable on boot
      systemd:
        name: apache2
        enabled: yes
        state: started

    - name: Deploy a basic index.html
      copy:
        content: "<html><body><h1>Hello from Ansible</h1></body></html>"
        dest: /var/www/html/index.html

Instructions:

  • Save this script as setup-apache.yml.
  • Update the hosts line with the name of the group or individual server defined in your Ansible inventory file.
  • Run the playbook using the command ansible-playbook setup-apache.yml.

Notes:

  • Make sure the target servers are accessible and you have the necessary permissions to execute commands as sudo.
  • You can modify the copy module task to deploy your specific index.html or any other web content.

AWS CloudFormation Template: Basic Network Setup

This CloudFormation template will create the following resources:

  • A Virtual Private Cloud (VPC).
  • A Subnet within the VPC.
  • An Internet Gateway attached to the VPC.
  • A Security Group within the VPC.

CloudFormation YAML Template:

AWSTemplateFormatVersion: '2010-09-09'
Description: Basic Network Setup

Resources:
  MyVPC:
    Type: AWS::EC2::VPC
    Properties:
      CidrBlock: 10.0.0.0/16
      EnableDnsSupport: true
      EnableDnsHostnames: true
      Tags:
        - Key: Name
          Value: MyVPC

  MySubnet:
    Type: AWS::EC2::Subnet
    Properties:
      VpcId: !Ref MyVPC
      CidrBlock: 10.0.1.0/24
      MapPublicIpOnLaunch: true
      Tags:
        - Key: Name
          Value: MySubnet

  MyInternetGateway:
    Type: AWS::EC2::InternetGateway
    Properties:
      Tags:
        - Key: Name
          Value: MyInternetGateway

  AttachGateway:
    Type: AWS::EC2::VPCGatewayAttachment
    Properties:
      VpcId: !Ref MyVPC
      InternetGatewayId: !Ref MyInternetGateway

  MySecurityGroup:
    Type: AWS::EC2::SecurityGroup
    Properties:
      GroupDescription: Allow HTTP and SSH access
      VpcId: !Ref MyVPC
      SecurityGroupIngress:
        - IpProtocol: tcp
          FromPort: 22
          ToPort: 22
          CidrIp: 0.0.0.0/0
        - IpProtocol: tcp
          FromPort: 80
          ToPort: 80
          CidrIp: 0.0.0.0/0

How to Deploy:

  • Save this content as basic-network-setup.yaml.
  • Open the AWS Management Console.
  • Go to the CloudFormation service.
  • Choose "Create stack" and select "With new resources (standard)".
  • Upload the basic-network-setup.yaml file and follow the prompts to create the stack.

Notes:

  • This template is a basic example and can be customized as needed.
  • The Security Group in this template allows SSH (port 22) and HTTP (port 80) access from any IP address. Adjust the CidrIp values as necessary for your security requirements.

This CloudFormation template will create the following resources:

  • A Virtual Private Cloud (VPC).
  • A Subnet within the VPC.
  • An Internet Gateway attached to the VPC.
  • A Security Group within the VPC.

CloudFormation YAML Template:

AWSTemplateFormatVersion: '2010-09-09'
Description: Basic Network Setup

Resources:
  MyVPC:
    Type: AWS::EC2::VPC
    Properties:
      CidrBlock: 10.0.0.0/16
      EnableDnsSupport: true
      EnableDnsHostnames: true
      Tags:
        - Key: Name
          Value: MyVPC

  MySubnet:
    Type: AWS::EC2::Subnet
    Properties:
      VpcId: !Ref MyVPC
      CidrBlock: 10.0.1.0/24
      MapPublicIpOnLaunch: true
      Tags:
        - Key: Name
          Value: MySubnet

  MyInternetGateway:
    Type: AWS::EC2::InternetGateway
    Properties:
      Tags:
        - Key: Name
          Value: MyInternetGateway

  AttachGateway:
    Type: AWS::EC2::VPCGatewayAttachment
    Properties:
      VpcId: !Ref MyVPC
      InternetGatewayId: !Ref MyInternetGateway

  MySecurityGroup:
    Type: AWS::EC2::SecurityGroup
    Properties:
      GroupDescription: Allow HTTP and SSH access
      VpcId: !Ref MyVPC
      SecurityGroupIngress:
        - IpProtocol: tcp
          FromPort: 22
          ToPort: 22
          CidrIp: 0.0.0.0/0
        - IpProtocol: tcp
          FromPort: 80
          ToPort: 80
          CidrIp: 0.0.0.0/0

How to Deploy:

  • Save this content as basic-network-setup.yaml.
  • Open the AWS Management Console.
  • Go to the CloudFormation service.
  • Choose "Create stack" and select "With new resources (standard)".
  • Upload the basic-network-setup.yaml file and follow the prompts to create the stack.

Notes:

  • This template is a basic example and can be customized as needed.
  • The Security Group in this template allows SSH (port 22) and HTTP (port 80) access from any IP address. Adjust the CidrIp values as necessary for your security requirements.
Explore Jenkins: Enhance Your CI/CD Skills Through Active Learning!

This Jenkinsfile defines a CI/CD pipeline for a Java application using Maven. It consists of three main stages:

  • Build: Executes mvn clean package, which cleans the target directory, compiles the source code, and packages the binary (typically a JAR or WAR file).
  • Test: Runs mvn test, which executes unit tests defined in the project.
  • Deploy: A placeholder stage where deployment steps can be added. This stage is meant to be customized based on how and where the application is deployed.

This pipeline provides a basic structure for Java Maven projects, automating the process of building, testing, and preparing for deployment.

pipeline {

    agent any


    stages {

        stage('Build') {

            steps {

                sh 'mvn clean package'

            }

        }

        

        stage('Test') {

            steps {

                sh 'mvn test'

            }

        }

        

        stage('Deploy') {

            steps {

                // Add deployment steps here

                echo 'Deploying application...'

            }

        }

    }

}

Instructions:

  • Save this script as Jenkinsfile in the root of your Java Maven project.
  • Ensure your Jenkins server has Maven set up and configured.
  • Create a new Jenkins pipeline job and point it to your repository where this Jenkinsfile is located.
  • Run the pipeline job to execute the stages.

Notes:

  • Customize the 'Deploy' stage according to your deployment environment.
  • Ensure Jenkins has appropriate plugins installed for Maven and any other tools you require.

Get Started with GitLab: Collaborate and Code in Our Interactive Environment!

The .gitlab-ci.yml file defines a CI/CD pipeline specifically for a Node.js application, with the following stages:

  • Build: Installs dependencies for the Node.js application using npm install.
  • Test: Executes tests defined in the project using npm run test. This assumes that the package.json file has a test script configured.
  • Deploy: A placeholder for deployment scripts. This stage should be customized to deploy the application to the desired environment.

This configuration ensures that every push to the repository triggers an automated process for building, testing, and preparing the Node.js application for deployment.

stages:
  - build
  - test
  - deploy

build_job:
  stage: build
  script:
    - echo "Building the application..."
    - npm install

test_job:
  stage: test
  script:
    - echo "Running tests..."
    - npm run test

deploy_job:
  stage: deploy
  script:
    - echo "Deploying the application..."
    # Add deployment scripts here

Instructions:

  • Save this script as .gitlab-ci.yml in the root of your Node.js project.
  • Ensure your project includes a package.json with relevant scripts defined.
  • Once pushed to your GitLab repository, the CI/CD pipeline will trigger automatically based on this file.

Notes:

  • Modify the deploy script to match your deployment environment.
  • Add any necessary environment variables or additional stages as required.
Practice Git: Experience Real-World Version Control Scenarios!

The GitHub Actions workflow is tailored for Python applications. It defines a job that runs on each push to the repository, with the following steps:

  • Set up Python: Configures the Python environment using a specified version (3.8 in this case).
  • Install Dependencies: Installs the required Python dependencies listed in requirements.txt.
  • Run Tests: Executes unit tests using Python's built-in test framework (unittest). It assumes tests are located in a directory named tests.

The deploy step is a placeholder for actual deployment commands and should be customized based on where and how the Python application is deployed.

name: Python CI/CD

on: [push]

jobs:
  build:
    runs-on: ubuntu-latest

    steps:
    - uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.8'
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r requirements.txt
    - name: Run tests
      run: |
        python -m unittest discover -s tests

  deploy:
    runs-on: ubuntu-latest
    needs: build
    steps:
    - uses: actions/checkout@v2
    - name: Deploy to Production
      run: echo "Add deployment steps here"

Instructions:

  • Save this as .github/workflows/python-ci.yml in your Python project repository.
  • Ensure your Python project has a requirements.txt file and tests set up.
  • When you push changes to your repository, GitHub Actions will automatically execute this workflow.

Notes:

  • Customize the Python version and deployment steps as needed.
  • Add or modify steps according to your project's specific CI/CD requirements.
Monitor with Prometheus & Helm: Engage in Hands-On Observability!

Prometheus Configuration File (prometheus.yml)

global:


  scrape_interval: 15s



scrape_configs:


  - job_name: 'prometheus'


    static_configs:


      - targets: ['localhost:9090']



 - job_name: 'my-application'


    static_configs:


      - targets: ['my-app-service:80']

Instructions:

  • Place prometheus.yml in your Prometheus server directory.
  • Replace my-app-service:80 with the address and port of your application.
  • Start Prometheus server with ./prometheus --config.file=prometheus.yml.

Notes:

  • This configuration sets Prometheus to scrape metrics from itself and your application.
  • Adjust scrape_interval as needed for your monitoring requirements.
Visualize with Prometheus and Grafana: Start Your Monitoring Journey!

Grafana Dashboard JSON Template

{  "__inputs": [

   {

     "name": "DS_PROMETHEUS",

     "label": "Prometheus",

     "description": "",

     "type": "datasource",

     "pluginId": "prometheus",

     "pluginName": "Prometheus"

   }

 ],  

"__requires": [/.../],  

"annotations": {/.../},  

"editable": true,  "gnetId": null,  

"graphTooltip": 0,  

"id": null,  

"links": [],  

"panels": [/.../],  

"refresh": "10s",  

"schemaVersion": 16,  

"style": "dark",  

"tags": ["prometheus"],  

"templating": {/.../},  

"time": {/.../},  

"timepicker": {/.../},  

"timezone": "",  

"title": "My Dashboard",  

"uid": null,  

"version": 1

}

Instructions:

  • Import this JSON template in Grafana to create a new dashboard.
  • Adjust the dashboard panels and queries according to your metrics.

Notes:

  • Ensure your Grafana instance is configured with Prometheus as a data source.
  • This template is a basic skeleton; customize it with specific panels and metrics relevant to your application.

Elastic Stack (ELK): Configurations for Log Ingestion, Processing, and Visualization

ELK Stack PlayGround : https://kodekloud.com/playgrounds/playground-elk-stack 

Filebeat Configuration (filebeat.yml)

filebeat.inputs:
- type: log
  paths:
    - /var/log/*.log

output.elasticsearch:
  hosts: ["localhost:9200"]

Instructions:

  • Place filebeat.yml in your Filebeat installation directory.
  • Replace /var/log/*.log with the path to your application logs.
  • Ensure Elasticsearch is running and reachable at localhost:9200.

Notes:

  • Filebeat is used to ship logs to Elasticsearch.
  • Adjust the paths to match the locations of your application logs.

Logstash Configuration (logstash.conf)

input {
  beats {
    port => 5044
  }
}

filter {
  // Add your filters here
}

output {
  elasticsearch {
    hosts => ["localhost:9200"]
    index => "logstash-%{+YYYY.MM.dd}"
  }
}

Instructions:

  • Place logstash.conf in your Logstash installation directory.
  • Start Logstash with ./logstash -f logstash.conf.

Notes:

  • This configuration ingests logs from Filebeat and outputs them to Elasticsearch.
  • Customize the filter section to process your logs as needed.

Kibana: Dashboard Template for Log Monitoring

Kibana Dashboard JSON Template

{

 "objects": [

   {

     "attributes": {

       "description": "",

       "kibanaSavedObjectMeta": {

         "searchSourceJSON": {

           "filter": [],

           "query": {

             "language": "kuery",

             "query": ""

           }

         }

       },

       "title": "ELK Log Monitoring",

       "uiStateJSON": {},

       "version": 1,

       "visState": {

         "aggs": [

           /* Define aggregations and metrics here /

         ],

         "params": {

           / Define visualization parameters */

         },

         "type": "histogram"

       }

     },

     "id": "log-monitoring",

     "type": "visualization",

     "version": "7.10.0" // Use your Kibana version

   }

 ],

 "type": "dashboard",

 "version": "7.10.0" // Use your Kibana version

}

Instructions:

  • Create Dashboard Template File:
  • Save the above JSON content in a file named elk-log-monitoring-dashboard.json.
  • Import Dashboard into Kibana:
  • Open Kibana in your web browser.
  • Navigate to the "Management" section.
  • Choose “Saved Objects” under Kibana.
  • Click on the "Import" button and select the elk-log-monitoring-dashboard.json file.
  • Customize Your Dashboard:
  • Once imported, you can further customize the dashboard.
  • Modify the visualizations and aggregations according to your log data and monitoring needs.

Notes:

  • This template is a basic skeleton for creating a log monitoring dashboard in Kibana. You need to customize it according to your specific log data and monitoring requirements.
  • Ensure your Filebeat and Logstash configurations are correctly set up to send data to Elasticsearch, which Kibana will use.
  • The visualization types, aggregations, and filters should be tailored to highlight the most relevant data in your logs.
Get Started with Elastic Stack: Collaborate and Code in Our Interactive Environment!

ELK Stack Configuration Guide for Web Server Logs

This comprehensive guide provides you with the templates and detailed steps necessary to deploy the ELK Stack for collecting, processing, storing, and visualizing web server logs. This solution leverages Elasticsearch, Logstash, Kibana, and Filebeat to create a powerful system for real-time log monitoring and analysis.

Elasticsearch Index Template Setup

Template Configuration (ElasticsearchIndexTemplate.json):

PUT _index_template/template_web_logs
{
 "index_patterns": ["web-logs-*"],
 "template": {
   "settings": {
     "number_of_shards": 1,
     "number_of_replicas": 1
   },
   "mappings": {
     "properties": {
       "timestamp": { "type": "date" },
       "log_level": { "type": "keyword" },
       "message": { "type": "text" },
       "ip": { "type": "ip" },
       "response_time": { "type": "float" }
     }
   }
 }
}

How to Deploy:

  • Replace template_web_logs with your template name (e.g., template_myapp_logs).
  • Use the Elasticsearch API or Kibana Dev Tools, replacing localhost:9200 with your Elasticsearch server address: curl -X PUT "localhost:9200/_index_template/template_web_logs" -H 'Content-Type: application/json' [email protected]

Logstash Configuration

Configuration File (LogstashConfig.conf):

input {
 beats {
   port => 5044
 }
}

filter {
 grok {
   match => { "message" => "%{COMBINEDAPACHELOG}" }
 }
 date {
   match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ]
 }
}

output {
 elasticsearch {
   hosts => ["http://localhost:9200"]
   index => "web-logs-%{+YYYY.MM.dd}"
   user => "elastic"
   password => "changeme"
 }
}

How to Deploy:

  • Adjust hosts, user, and password to match your Elasticsearch details.
  • Place the LogstashConfig.conf in Logstash's configuration directory.
  • Start Logstash: bin/logstash -f LogstashConfig.conf.

Kibana Visualization and Dashboards

Creating Visualizations:

  1. Access Kibana (typically at http://localhost:5601).
  2. Create an Index Pattern: Go to Management → Index Patterns → Create new. Use web-logs-* as the pattern.
  3. Navigate to "Visualize" and create new visualizations using the fields from your logs.
  4. Assemble visualizations into dashboards for a comprehensive view.

Filebeat Configuration

Configuration File (filebeat.yml):

filebeat.inputs:
- type: log
 enabled: true
 paths:
   - /var/log/apache2/*.log # Adjust the path to your log files
 fields:
   log_type: apache_log

output.logstash:
 hosts: ["localhost:5044"] # Your Logstash server address

How to Deploy:

  • Install Filebeat on the server where your logs are generated.
  • Modify filebeat.yml with your log paths and output destination.
  • Start Filebeat: sudo service filebeat start.

Final Steps and Verification

After deploying each component:

  1. Ensure Data Flow: Confirm that logs are moving from Filebeat to Logstash, then to Elasticsearch, and finally visualizable in Kibana.
  2. Monitor System Health: Use Kibana's monitoring features to check the health of Elasticsearch, Logstash, and Filebeat.

This guide provides a foundational setup. Tailor each configuration to fit your specific logging needs and infrastructure for an effective log monitoring and analysis solution.

Practice Git: Experience Real-World Version Control Scenarios!

Git Repository Essentials for a Python Project

This comprehensive guide outlines the essentials for setting up and maintaining a Git repository for a Python project. It includes a .gitignore file to exclude unnecessary files, a template for creating a README.md, guidelines for branch naming, and a pull request template to standardize contributions.

Basic .gitignore for a Python Project

A properly configured .gitignore file is crucial for keeping your repository clean by excluding temporary files, environment-specific configurations, and other non-essential files from being tracked by Git.

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*.so

# Environment files
.env

# Virtual environment
venv/

# IDE settings
.idea/

# Log files
*.log

Instructions: Save this content as .gitignore in the root of your Python project to automatically ignore common unnecessary files.

README Template

A well-documented README.md helps users and contributors understand, install, and use your project effectively.

# Project Title

## Description
Short description of the project.

## Installation
Steps to install the project.

## Usage
How to use the project.

## Contributing
Guidelines for contributing to the project.

## License
Specify the project license (e.g., MIT, GPL).

Instructions: Customize each section of this README.md template with your project details and save it in the root of your repository.

Simple Branch Naming Guidelines

Consistent branch naming helps organize and manage changes in your repository.

  • Feature branches: feature/<feature-name>
  • Bug fixes: bugfix/<bug-name>
  • Hotfixes: hotfix/<hotfix-name>
  • Releases: release/v<version>

Instructions: Adopt these naming conventions for branches in your project to maintain clarity and order.

Pull Request Template

A pull request template ensures that all contributions are consistent and provide the necessary information for review.

## Description
A brief summary of the changes.

## Type of Change
- [ ] New feature
- [ ] Bug fix
- [ ] Documentation update

## How Has This Been Tested?
Describe how you've tested the changes.

## Checklist
- [ ] I have followed the contribution guidelines.
- [ ] My changes do not generate new warnings.

Instructions: Save this template as .github/PULL_REQUEST_TEMPLATE.md in your repository. It will automatically populate the description field for new pull requests.

Enhancements and Best Practices

  • Continuous Integration (CI): Consider setting up CI workflows using tools like GitHub Actions to automate testing and linting for every push or pull request.
  • Code Reviews: Encourage code reviews for pull requests to improve code quality and foster collaboration.
  • Documentation: Keep your documentation, including the README.md, up to date with project changes and releases.

Bash/PowerShell: Scripts for Common System Administration Tasks


Bash Script for Basic System Updates (update_system.sh)

#!/bin/bash

# Update and upgrade system packages
echo "Updating and upgrading system packages..."
sudo apt-get update && sudo apt-get upgrade -y

# Clean up
echo "Cleaning up..."
sudo apt-get autoremove -y

echo "System update complete."

Instructions:

  • Save this script as update_system.sh.
  • Make the script executable with chmod +x update_system.sh.
  • Run with ./update_system.sh.

Notes:

  • This script is for Debian-based systems. Modify package manager commands for other distributions.
  • Ensures the system is updated and removes unnecessary packages.
Dive Into Python 3.8: Practice Your Coding Skills in a Live Environment!

Python Script for AWS S3 File Upload (s3_upload.py)

import boto3
from botocore.exceptions import NoCredentialsError

def upload_to_aws(local_file, bucket, s3_file):
    s3 = boto3.client('s3')

    try:
        s3.upload_file(local_file, bucket, s3_file)
        print(f"Upload Successful: {s3_file}")
        return True
    except FileNotFoundError:
        print("The file was not found")
        return False
    except NoCredentialsError:
        print("Credentials not available")
        return False

uploaded = upload_to_aws('local_file.txt', 'mybucket', 's3_file.txt')

Instructions:

  • Install boto3 with pip install boto3.
  • Replace local_file.txt, mybucket, and s3_file.txt with your file, bucket name, and S3 file name.
  • Ensure AWS credentials are configured.

Notes:

  • This script uploads a file to an AWS S3 bucket.
  • Handles basic exceptions like file not found or missing credentials.

Python Script for Downloading Files from AWS S3

s3_download.py:

import boto3


from botocore.exceptions import NoCredentialsError, ClientError


import logging



def download_file_from_s3(bucket, s3_object, local_file):


    s3 = boto3.client('s3')


    try:


        s3.download_file(bucket, s3_object, local_file)


        print(f"Downloaded {s3_object} from {bucket} to {local_file}")


    except ClientError as e:


        logging.error(e)


        return False


    except NoCredentialsError:


        logging.error("Credentials not available")


        return False


    return True

# Example Usage

bucket_name = 'your-bucket-name'

s3_object_name = 'your-object-name'

local_file_path = 'path/to/save/file'

download_file_from_s3(bucket_name, s3_object_name, local_file_path)

Python Script to Automate EC2 Instance Creation

create_ec2_instance.py:

import boto3

def create_ec2_instance(image_id, instance_type, keypair_name):

   ec2 = boto3.resource('ec2')

   instance = ec2.create_instances(

       ImageId=image_id,

       MinCount=1,

       MaxCount=1,

       InstanceType=instance_type,

       KeyName=keypair_name

   )

   print(f"EC2 Instance {instance[0].id} created")

# Example Usage

image_id = 'ami-12345'

# Replace with actual AMI ID

instance_type = 't2.micro'

keypair_name = 'your-keypair-name'  

# Replace with your keypair name

create_ec2_instance(image_id, instance_type, keypair_name)

Python Script for Basic Data Processing

Data_processing.py:

import pandas as pd

def load_and_process_data(file_path):    # Load data    df = pd.read_csv(file_path)

# Data processing steps
# Example: df = df.dropna()  # Removing missing values

return df

# Example Usage

file_path = 'path/to/your/data.csv'processed_data = load_and_process_data(file_path)print(processed_data.head())

Join Us & Enhance Our DevOps Library!
Explore our Git repo for practical DevOps templates and help us grow by adding more useful ones from your day-to-day experiences.
Explore Our Git Repository