
1Access the labs: https://kode.wiki/linux-labs

Kodekloud.com

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

2
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Log into local & remote graphical and
text mode consoles

There will be many commands we will use in Linux.

And each command has a lot of command line

switches. How are we supposed to remember them

all?

As we use a command repeatedly, we'll learn

everything about it and memorize what each option

does. But in the beginning, we might forget about

these options after just one or two uses. That's why

Linux gives you multiple ways to access "help

manuals" and documentation, right at the command

line.

3
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Local text-mode console

Login Methods

Local graphical-mode console

Remote text-mode login

Remote graphical-mode login

So, let's dive right in and start with some simple

concepts.

We're all used to logging in to apps or websites by

providing a username and password. Logging into a

Linux system is pretty much the same, so there's

not much mystery here. We'll look at four ways to

log in:

1.Log into a local Linux system (local text-mode

console).

2.Log into a local Linux system (local graphical-

mode console).

4
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

3. Log into a remote Linux system (text-mode login)

4.Log into a remote Linux system (graphical-mode

login)

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 4

Console Virtual Terminal Terminal Emulator

You'll often hear terms like "console", "virtual

terminal", and "terminal emulator". And it may be

hard to understand why they are called this way.

Nowadays, a "console" is just a screen where your

operating system displays some text and where it

allows you to log in or type commands. And a

terminal emulator is nothing more than a graphical

app that runs in a window and does a similar thing

(shows you text output and allows you to type

commands). These terms come from the old days of

computing.

5
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Consoles

Computers were incredibly expensive, so a

university may have had a single one available for

their entire building.

But multiple people could connect to it and do their

work by using physical devices that allowed them to

type text and commands and also display on a

screen what is currently happening. These devices

were consoles or terminals. So instead of buying 25

super expensive computers, you could have just

one, but 25 people could use it, even at the same

time.

6
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Nowadays, consoles and terminals, in Linux, are

usually things that exist in software, rather than

hardware. For example:
•

When you see Linux boot and a bunch of text

appears on screen, telling you what happens as the

operating system is loading - that's the console.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 6

Virtual Terminals

CTRL ALT F2+ +

After a Linux machine has booted, if you press

CTRL+ALT+F2 on the keyboard, you'll see a virtual

terminal (vt2).

7
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Terminal Emulators

If you have Linux installed on your desktop, with a

graphical user interface, when you want to type

commands you open a terminal emulator.

Let's move back to logins. In practice, most often

you'll log in to remote Linux systems. But let's start

with the less common scenarios.

8
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Local GUI

"Local" is just a tech word for "something that is in

front of you" or "something you can physically

access". A computer on your desk is local. A server

running on Google Cloud is remote.

Usually, when Linux is installed on servers, it is

installed without GUI (Graphical User Interface)

components. There's no mouse pointer, no buttons,

no windows, no menus, nothing of that sort, just

text. But you might sometimes run across servers

that include this GUI. Logging in is super easy, as

it's all "in your face". You'll see a list of users you

can choose from and you can then type your user's

9
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

password.

Don't forget to log out when you've finished your

work.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 9

Local text console

If the device has the typical server-oriented Linux

OS installed, without any GUI components, logging

in (locally) is also easy. You'll usually see something

like this on your screen:

There's no list of users this time, but you can just

type your username and then your password. Note

that you won’t see your password as you type.

When your work is done, you should type exit to log

out.

10
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Remote GUI

VNC RDP

Again, most Linux operating systems running on

servers will have no GUI components installed. But

you will sometimes run into exceptions. Connecting

to a remote server, to its graphical user interface is

slightly more tricky. First of all, there is no standard

set in stone. Whoever configured that server chose

their preferred way of dealing with these remote

graphical logins. They could have chosen to install a

VNC (Virtual Network Computing) solution. In this

case, you'd need to download the proper VNC client

(also called "VNC viewer") to connect to it. This

might be TightVNC or RealVNC or something else

11
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

entirely. It all depends on the VNC server running on

the remote system and what VNC clients your local

operating system supports.

If the administrator of that server wanted to let

Windows users connect easily, it might mean that

they used a solution allowing for RDP connections

(Remote Desktop Protocol). This means you can

just click on Windows' start button, type "Remote

Desktop Connection", open that app and then enter

the username and password you've been provided.

Whatever it might be, connecting to a remote

graphical console is pretty easy. It all boils down to

downloading the application that lets you do that,

entering the remote system's IP address, followed

by an username and a password.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 11

Remote text-mode login

telnet

SSH

Secure SHell

Initiating a text-based remote connection to a Linux

system is pretty standard. That's because almost

every Linux server uses the same tool that allows

for remote logins: the OpenSSH daemon (program

that runs in the background, on the server, all the

time). SSH comes from Secure SHell. Until SSH,

something called telnet was the standard. telnet was

highly insecure as it did not encrypt communication

between you and the server you were connecting to.

This meant that anyone on the same network with

you could steal your Linux user password and see

everything you did on that server, during your telnet

12
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

session.

The SSH protocol uses strong encryption to avoid

this and the OpenSSH daemon is built carefully to

avoid security bugs as much as possible. Long story

short, OpenSSH is used by millions of servers and

has stood the test of time, proving to be very hard to

hack. For these reasons everyone happily uses it

and trusts that it can do a pretty good job at only

letting authorized people log into their operating

systems, while keeping bad people out.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 12

>_

$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP group default qlen 1000

link/ether 08:00:27:6b:d7:87 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.17/24 brd 192.168.0.255 scope global dynamic

noprefixroute enp0s3
valid_lft 1966sec preferred_lft 1966sec

inet6 fe80::a00:27ff:fe6b:d787/64 scope link noprefixroute

SSH login

Server

Computer

SSH client

SSH daemon

In case you're following along on your virtual

machine, log in locally (directly from the virtual

machine window) and then enter this command: (ip

a) You'll see what IP your machine uses. I’ve

outlined the information we’re looking for in yellow.

We'll use this IP – in our case 192.168.0.17 -- to

simulate a situation where we have a server in a

remote location.

Now to recap. We have an SSH daemon (program)

13
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

running on the server. This listens for any incoming

connections. To be able to connect to this remote

SSH daemon, we'll need something called an SSH

client (yet another program). This client will run on

our current laptop/desktop computer.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 13

MacOS & Linux

MacOS systems and Linux-based operating

systems, such as Ubuntu, already have an SSH

client preinstalled. If you're on MacOS or Linux,

open a terminal emulator window.

14
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Windows

In the past, if you were running Windows, you

needed to install an SSH client like PuTTY. On the

latest Windows 10 this is no longer necessary as an

SSH client is also preinstalled. If you're on

Windows, click the Start Menu and type "cmd" to

open up Command Prompt.

15
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 15

>_

SSH

$ ssh aaron@192.168.0.17
aaron@192.168.0.17's password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Tue Oct 19 20:27:15 2021 from 192.168.0.3
[aaron@LFCS-CentOS ~]$

To connect to a remote Linux system through SSH, type:

Of course, replace "aaron" with the actual username you created inside your

Linux OS running in the virtual machine. Same with the IP address. From here

on, we'll stay inside this SSH session to go through all the exercises in the

upcoming lessons. Please join me in the demonstration video to see each of
these login methods. I’ll see you there.

16
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

17
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Read and Use System
Documentation

There will be many commands we will use in Linux.

And each command has a lot of command line

switches. How are we supposed to remember them

all?

As we use a command repeatedly, we'll learn

everything about it and memorize what each option

does. But in the beginning, we might forget about

these options after just one or two uses. That's why

Linux gives you multiple ways to access "help

manuals" and documentation, right at the command

line.

18
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

--help

$ ls --help

Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..
-B, --ignore-backups do not list implied entries ending with ~
-I, --ignore=PATTERN do not list implied entries matching shell PATTERN
-k, --kibibytes default to 1024-byte blocks for disk usage
-l use a long listing format
-c with -lt: sort by, and show, ctime (time of last

modification of file status information);
with -l: show ctime and sort by name;
otherwise: sort by ctime, newest first

$ ls -l

bin/ libexec/ sbin/
lib/ local/ share/

Let's say you want to see that long listing format with ls, to get a look at file

permissions. But you forgot what the correct option was. Was it -p for
permissions? We can get a quick reminder with:

ls --help

This will show us a lot of output. But if we scroll up, we'll find what we're

looking for: the –l flag, in this case.

You can see how command line options are sorted alphabetically and

described with short text. That's why the --help option for commands will

very often be helpful when we forget about these options (and we will, as
there are so many of them for each command).

19
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

--help

$ journalctl --help

journalctl [OPTIONS...] [MATCHES...]

Query the journal.

Options:
--system Show the system journal
--user Show the user journal for the current user

-M --machine=CONTAINER Operate on local container
-S --since=DATE Show entries not older than the specified date
-U --until=DATE Show entries not newer than the specified date
-c --cursor=CURSOR Show entries starting at the specified cursor

--after-cursor=CURSOR Show entries after the specified cursor
--show-cursor Print the cursor after all the entries

-b --boot[=ID] Show current boot or the specified boot
--list-boots Show terse information about recorded boots

lines 1-27

PAGE
UP

PAGE
DOWN

q

--help will usually show a condensed form of help, with very short

explanations. For ls, that's ok, as it's a very simple command. Other

commands, however, are very complex and we need to read longer
explanations to understand what they do and how we use them.

Let's take journalctl as an example, a command that lets us read system logs.

journalctl --help

will show us this:

We'll notice that this opens in a slightly different way (look at "lines 1-27") in

the bottom left corner. This opened in what Linux calls a "pager". It's simply a

"text viewer" of sorts that lets us scroll up and down with our arrow keys or
PAGE UP, PAGE DOWN. To exit this help page, press q.

20
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

JOURNALCTL(1) journalctl JOURNALCTL(1)

NAME
journalctl - Query the systemd journal

SYNOPSIS
journalctl [OPTIONS...] [MATCHES...]

DESCRIPTION
journalctl may be used to query the contents of the systemd(1) journal as written by systemd-
journald.service(8).

If called without parameters, it will show the full contents of the journal, starting with the oldest entry
collected.

If one or more match arguments are passed, the output is filtered accordingly. A match is in the format
"FIELD=VALUE", e.g. "_SYSTEMD_UNIT=httpd.service", referring to the components of a structured journal entry.
See systemd.journal-fields(7) for a list of well-known fields. If multiple matches are specified matching
different fields, the log entries are filtered by both, i.e. the resulting output will show only entries
matching all the specified matches of this kind. If two matches apply to the same field, then they are
automatically matched as alternatives, i.e. the resulting output will show entries matching any of the
specified matches for the same field. Finally, the character "+" may appear as a separate word between other
terms on the command line. This causes all matches before and after to be combined in a disjunction (i.e.
logical OR).

Manual Pages With man Command

$ man journalctl

EXAMPLES
Without arguments, all collected logs are shown unfiltered:

journalctl

With one match specified, all entries with a field matching the expression are shown:

journalctl _SYSTEMD_UNIT=avahi-daemon.service

If two different fields are matched, only entries matching both expressions at the same time are shown:

journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=28097

If two matches refer to the same field, all entries matching either expression are shown:

journalctl _SYSTEMD_UNIT=avahi-daemon.service _SYSTEMD_UNIT=dbus.service

If the separator "+" is used, two expressions may be combined in a logical OR. The following will show all
messages from the Avahi service process with the PID 28097 plus all messages from the D-Bus service (from any
of its processes):

journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=28097 + _SYSTEMD_UNIT=dbus.service

All important commands in Linux have their own manuals or "man pages". To

access a command's manual enter "man name_of_command". In our case,
we'd use:

man journalctl

Now we get:

•Short description of what the command does in NAME.

•General syntax of command in SYNOPSIS

•Detailed description of command, how it works, and so on, in DESCRIPTION.

•Detailed descriptions of command line options in OPTIONS.

•And some manual pages even have some EXAMPLES near the end of the

manual.

21
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Manual Pages With man Command

$ man man

The table below shows the section numbers of the manual followed by the types
of pages they contain.

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conventions), e.g. man(7),

groff(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

$ man 1 printf

$ man 3 printf

Sometimes, you will have two man pages with the same name. Example:

printf is a command. But printf is also a function that can be used by
programmers.

Manual pages can fall into one of these categories (sections), and we can see
these by looking at the man page for man itself, by typing man man:

If you want to read the man page about printf, the command, you tell man you
want to consult printf from section 1, like this

man 1 printf

If you want to read about printf, the function, you tell man you want to look at
section 3

man 3 printf

It's useful to know that during online exams, the Linux Foundation will let you

22
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

use man and --help. Try to use --help if you forgot a command line option as

that gives you the fastest results. Diving deep into a manual page will eat up
more time.

But this is all well and good when we know what command we want to explore.

But what if we can't even remember the name of the command that we need
to use?

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 22

>_

Searching For Commands -
apropos

$ apropos director

directory directories

$ apropos director

director: nothing appropriate

$ sudo mandb

$ apropos director

ls (1) - list directory contents
ls (1p) - list directory contents
mcd (1) - change MSDOS directory
mdeltree (1) - recursively delete an MSDOS
directory and its contents
mdir (1) - display an MSDOS directory
mdu (1) - display the amount of space
occupied by an MSDOS direc...
mkdir (1) - make directories
mkdir (1p) - make directories
mkdir (2) - create a directory
mkdir (3p) - make a directory relative to
directory file descriptor
mkdirat (2) - create a directory

Imagine you forgot the name of the command that

lets you create a new directory. How would you

search for it?

apropos is a command that lets you search through

man pages. It looks at the short descriptions of each

man page and tries to see if it matches the text we

entered. For example, with the next line we can

search for all man pages that have the word

"director" in their short descriptions. We'll use

"director" and not "directory". "director" will match

commands that contain the word "directory" but

23
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

also the ones that contain "directories". So, we

keep it more generic this way.

The first time we would run apropos

director, we’d get an error.

That’s because apropos relies on a database. A

program must refresh it periodically. Since we just

started this virtual machine, the database hasn't

been created yet. We can create it manually with:

sudo mandb

On servers that have already run for days, there

should be no need to do this, as it will be done

automatically.

Now the apropos command should work:

apropos director

If we scroll up, we can see the entry we’re looking

for: mkdir.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 23

>_

Searching For Commands -
apropos

$ apropos director

ls (1) - list directory contents
ls (1p) - list directory contents
mcd (1) - change MSDOS directory
mdeltree (1) - recursively delete an MSDOS
directory and its contents
mdir (1) - display an MSDOS directory
mdu (1) - display the amount of space
occupied by an MSDOS direc...
mkdir (1) - make directories
mkdir (1p) - make directories
mkdir (2) - create a directory
mkdir (3p) - make a directory relative to
directory file descriptor
mkdirat (2) - create a directory

$ apropos –s 1,8 director

ls (1) - list directory contents
mcd (1) - change MSDOS directory
mdeltree (1) - recursively delete an MSDOS
directory and its contents
mdir (1) - display an MSDOS directory
mdu (1) - display the amount of space
occupied by an MSDOS direc...
mkdir (1) - make directories

Sections 1 and 8

But those are a lot of entries. Makes it hard to spot

what we're looking for. You see, apropos doesn't just

list commands. It also lists some other things we

don't need, currently. We see stuff like (2). That

signals that that entry is in section 2 of the man

pages (system calls provided by the Linux kernel).

That's just too advanced for our purposes.

Commands will be found in sections 1 and 8. We

can tell apropos to only filter out results that lead to

commands from these categories. We do this by

using the -s option, followed by a list of the sections

we need.

24
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

apropos -s 1,8 director

And we can spot what we were looking for more

easily.

Notice how mkdir's description contains the word

"directories". If we'd used the word "directory" in

our apropos search, this command wouldn't have

appeared since "directory" wouldn't have matched

"directories". This is something to keep in mind

when you want to make your searches as open as

possible and match more stuff.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 24

>_

$ systemc
add-requires emergency isolate poweroff show
add-wants enable is-system-running preset show-environment
cancel exit kexec reboot start
cat force-reload kill reenable status
condreload get-default link reload stop
condrestart halt list-dependencies reload-or-restart suspend
condstop help list-jobs rescue switch-root

TAB TAB TAB
tl

$ systemctl list-dependencies TAB

Another thing that’ll save a lot of time is autocompletion. Type

systemc

press TAB

you get:

systemctl

Although this is not technically system documentation, it can still be helpful.

Many commands have suggestions on what you can type next. For example,
try this. Type

systemctl

25
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

add a space after the command (don't press ENTER) and now press TAB
twice.

You get a huge list of suggestions. This can help you figure out what your

options for that command are. Although you should not always rely on it. It's
not necessary that absolutely all options are included in this suggestion list.

now add to that:

systemctl list-dep

press TAB

endencies will get added at the end and you get: systemctl list-

dependencies. This is TAB autocompletion and many commands support it.

When you press TAB once, if your command interpreter can figure out what

you want to do, it will automatically fill in the letters. If there are many

autocomplete options and it can't figure out which one you want, press TAB

again and it will show the list of suggestions we observed earlier. These will be

huge timesavers in the long-run, and they might even help you in the exam, to

shave off a few seconds here and there, which might add up and let you
explore an extra question or two.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 25

>_

TAB: Suggest and Autocomplete

$ ls /u
bin/ libexec/ sbin/
lib/ local/ share/

TAB
sr/

TAB TAB

TAB suggestions and autocompletions also work for filenames or directory
names. Try

ls /u TAB

ls /usr/ TAB TAB

Now we can see directories available in /usr/ without even needing to explore

this directory with "ls" beforehand. And if we have a long filename like

"wordpress_archive.tgz" we might be able to just type "wor", press TAB and
that long name will be autocompleted.

Recommendation

While manuals and --help pages are super useful, the first few times you use

them, it might be hard to figure out how to do something, with that info alone.

We recommend you take a command you know nothing about and try to figure
out with just man and --help, how to do something. This practice will help you

26
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

develop the ability to quickly look for help when you're taking the LFCS exam.

There will be questions about theory you either don't know about, or you just

forgot. If you know how to quickly figure out the answer with a man page or --
help, you'll be able to pass the exam much more easily.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 26

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

27
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Working With Files
and Directories

Now we’ll look at how to create, delete, copy, and move files and directories in Linux.

Before we dive into this lesson, we need to

understand a few basic things:

1.What is a filesystem tree?

2.What is an absolute path?

3.What is a relative path?

28
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Listing Files and Directories

$ ls
Pictures Desktop
Documents Videos
Downloads Music

$ ls -a
.
..
.ssh
.bash_logout
.bash_profile
.bashrc
Pictures
Desktop Documents Videos
Downloads Music

ls list

-a all

To list files and directories in your current (working)

directory, we use the ls command in Linux.

Using ls in your home directory might look like this:

ls comes from list.

On Linux, files and directories can have a name that

begins with a . Example: the ".ssh" directory.

These won't be displayed by a simple ls

command. They are, in a way, hidden.

29
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

To list all files and directories, even the ones

beginning with a ., use ls –a (the –a flag comes

from the word all.)

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 29

>_

Listing Files and Directories

$ ls –l /var/log/
total 4064
drwxr-xr-x. 2 root root 4096 Oct 18 22:52 anaconda
drwx------. 2 root root 23 Oct 18 22:53 audit
-rw-------. 1 root root 19524 Nov 1 17:56 boot.log
-rw-rw----. 1 root utmp 0 Nov 1 14:08 btmp
-rw-rw----. 1 root utmp 0 Oct 18 22:38 btmp-20211101
drwxr-x---. 2 chrony chrony 6 Jun 24 09:21 chrony
-rw-------. 1 root root 9794 Nov 1 18:01 cron
-rw-------. 1 root root 10682 Oct 26 14:01 cron-20211026
drwxr-xr-x. 2 lp sys 135 Oct 26 14:13 cups
-rw-r--r--. 1 root root 35681 Nov 1 18:13 dnf.rpm.log
-rw-r-----. 1 root root 4650 Nov 1 17:56 firewalld
drwx--x--x. 2 root gdm 6 Oct 19 00:07 gdm
drwxr-xr-x. 2 root root 6 Aug 31 12:07 glusterfs

Of course, to list files and directories from a different

location, we just type the directory path at the end of

ls, like ls /var/log/ or ls -l /var/log/ to list files and

directories in a different format, called a "long

listing format," which shows us more details for

each entry, like the permissions for a file or

directory, what user/group owns each entry, when

it was last modified.

30
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Listing Files and Directories

$ ls –a -l
total 76
drwx------. 16 aaron aaron 4096 Nov 1 17:57 .
drwxr-xr-x. 7 root root 70 Oct 26 16:54 ..
-rw-------. 1 aaron aaron 5085 Nov 1 17:56 .bash_history
-rw-r--r--. 1 aaron aaron 18 Jul 27 09:21 .bash_logout
-rw-r--r--. 1 aaron aaron 141 Jul 27 09:21 .bash_profile
-rw-r--r--. 1 aaron aaron 376 Jul 27 09:21 .bashrc
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Desktop
drwxr-xr-x. 3 aaron aaron 25 Oct 23 18:15 Documents
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Downloads
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Music
drwxr-xr-x. 2 aaron aaron 28 Oct 26 13:37 Pictures
-rw-rw-r--. 1 aaron aaron 36 Oct 28 20:06 testfile

$ ls –al

We can combine the -a and -l command line

options like this:

ls -a –l or like this as ls –al.

This will display entries in long listing format and

also show us "pseudo-hidden" files and directories

which have a name beginning with a . It doesn’t

matter which order you put the flags, and you don’t

have to put a – in front of each of them. However,

31
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

the last form is preferred as it's faster to write it.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 31

>_

Listing Files and Directories

$ ls –alh
total 76K
drwx------. 16 aaron aaron 4.0K Nov 1 17:57 .
drwxr-xr-x. 7 root root 70 Oct 26 16:54 ..
-rw-------. 1 aaron aaron 5.0K Nov 1 17:56 .bash_history
-rw-r--r--. 1 aaron aaron 18 Jul 27 09:21 .bash_logout
-rw-r--r--. 1 aaron aaron 141 Jul 27 09:21 .bash_profile
-rw-r--r--. 1 aaron aaron 376 Jul 27 09:21 .bashrc
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Desktop
drwxr-xr-x. 3 aaron aaron 25 Oct 23 18:15 Documents
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Downloads
drwxr-xr-x. 2 aaron aaron 6 Oct 19 00:11 Music
drwxr-xr-x. 2 aaron aaron 28 Oct 26 13:37 Pictures
-rw-rw-r--. 1 aaron aaron 36 Oct 28 20:06 testfile

-h human readable format

There's also a command line option, -h, that shows

sizes in "human readable format": bytes,

kilobytes, megabytes, and so on. This must be

combined with the -l option. If we want to use three

options, we could use ls –alh.

32
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Filesystem Tree

home

aaron

var

log

/

Documents

Invoice.pdf

jane

Linux organizes files and directories in what it calls

the filesystem tree. Why is it called the filesystem

tree? Because just like a tree we'd see in nature,

this also has a root, branches and leaves. Except,

Linux's filesystem tree is inverted. The root is at

the top and its branches and leaves "grow"

downward.

33
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Filesystem Tree

home

aaron

var

log

/

Documents

Invoice.pdf

jane

file path

directory path

The root directory is /. This is the top-level

directory, there can be no other directories above

it. Under / there are a few subdirectories like

home, var, etc, and so on. These subdirectories

may also contain other subdirectories themselves.

To access a file or directory on our command line,

we must specify its file path or directory path. This

path can be written in two different ways:

34
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Absolute Path

home

aaron

var

log

/

Documents

Invoice.pdf

jane

home/aaron/Documents/Invoice.pdf/

The easiest to understand is the absolute path.

/home/aaron/Documents/Invoice.pdf is an

example of such a path.

Absolute paths always start out with the root

directory, represented by /. Then we specify the

subdirectories we want to descend into, in this

case, first home, then aaron, then Documents. We

can see the subdirectory names are separated by a

/. And we finally get to the file we want to access,

Invoice.pdf.

35
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

An absolute path can end with the name of a file,

but also with the name of a directory. If we'd want to

refer to the Documents directory, we'd specify a

path like /home/aaron/Documents

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 35

>_

Current / Working Directory

home

aaron

var

log

/

Documents

Invoice.pdf

jane

$ pwd
/root

root

print working directory

To understand a relative path, we first must explore

what the current directory means. This is also

called the working directory.

To see our current (working) directory we can type

pwd

pwd = Print Working Directory

36
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

When we're working at the command line, we're

always "inside" a directory. For example, if we log in

as the user "aaron" on some server, our starting

current directory might be /home/aaron. Every user

starts in its home directory when they log in. jane

might have it at /home/jane, and root (the super

user/administrator) has it at /root.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 36

>_

Current / Working Directory

home

aaron

var

log

/

Documents

Invoice.pdf

jane

root

$ cd /var/log

$ cd ..

$ cd /home/aaron

change directory

.. = parent directory

To change our current directory, we use the cd

command (change directory).

cd /var/log

would change our current directory to /var/log. We

used an absolute path here. But we can also

change directory this way:

cd ..

37
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

This will take us one directory UP.

If we were cd into /home/aaron, running “cd ..”

would take us into /home, which becomes the new

current directory.

“..” always refers to the parent directory of our

current directory. This was an example of using a

very simple relative path. Let's dive deeper.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 37

>_

Relative Path

home

aaron

var

log

/

Documents

Invoice.pdf

$ Documents/Invoice.pdf

$../Invoice.pdf

$ Invoice.pdf

Invoice.pdf

Invoice.pdf

$../../Invoice.pdf

Invoice.pdf

Let's imagine our current

directory is /home/aaron. With

relative paths we can refer to

other places in one of three main

ways

•Locations "under" our current

38
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

directory. E.g.,

Documents/Invoice.pdf Since

we're in /home/aaron, typing a

path like

Documents/Invoice.pdf is like

typing

/home/aaron/Documents/Invoic

e.pdf. Our relative path "gets

added" to our current directory

and we get to our PDF file.

•Locations in our current

directory. Typing Invoice.pdf will

access the file at

/home/aaron/Invoice.pdf

•Locations above our current
directory. Typing ../Invoice.pdf

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 38

points to the file at

/home/Invoice.pdf. Since we

used ../ we basically said, "go

one directory up".

•We can use .. multiple times.

../../Invoice.pdf points to the file

at /Invoice.pdf. The first ..

"moved" the relative path at

/home, the next .. moved it at /.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 38

>_

Current / Working Directory

home

aaron

var

log

/

Documents

Invoice.pdf

$ cd /

$ cd

$ cd -

Go to root directory

Go to previous directory

Go to home directory

Extra tips:

If you're in /var/log currently and

you move to /, you could run the

command cd / and it will take you
to the root directory.

39
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

You can return to your previous

working directory with the cd -

command. It will take you back to

/var/log.

If you're in /var/log and you want

to return to your home directory

– in our case, /home/aaron –
use cd.

cd without any options or

paths after it will always take

you back to the home
directory.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 39

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 39

>_

Creating Files

$ touch Receipt.pdf

$ touch ../jane/Receipt.pdf

$ touch /home/jane/Receipt.pdf

/

home

aaron

Receipt.pdf

jane

Receipt.pdf

Let’s assume we’re in our home directory, and we

want to create a new file. To do this, we can use

touch. For example, to create a file named

“Receipt.pdf,” we would type touch Receipt.pdf.

This will create it inside the current directory. To

create it at another location, we could use touch

/home/jane/Receipt.pdf

Since we're in /home/aaron, we could also use the

40
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

relative path to create file in /home/jane by typing

touch ../jane/Receipt.pdf.

Both commands would work the
same because all the commands we'll

discuss accept both absolute, and relative paths,

so we won't mention these alternatives for each

one. Just know that after the command, you can use

any kind of path you want.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 40

>_

Creating Directories

/

home

aaron jane

$ mkdir Receipts

Receipts

make directory

Receipt.pdf Receipt.pdf

To create a new directory, use mkdir; for example:

mkdir Receipts

mkdir comes from make directory

41
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Copying Files

/

home

aaron

Receipts
Receipt.pdf

$ cp Receipt.pdf Receipts/

$ cp Receipt.pdf Receipts

$ cp Receipt.pdf Receipts/ ReceiptCopy.pdf

cp [source] [destination] copy

Receipt.pdf ReceiptCopy.pdf

To copy a file, we use the cp

command, which is short for

copy. cp is followed by the path

to the file we want to copy

(source), then the path to the

destination where we want to
copy it. "cp source destination"

42
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

To copy Receipt.pdf to the

Receipts directory, we’d use cp

Receipt.pdf Receipts/

Notice how we terminated the

path to the Receipts directory

with a /, to make it Receipts/?

Without the / would have worked

too. But it's good practice to

end your directories with a /.

This way, you'll form a healthy

habit and get a visual indicator

that tells you when Receipts

(without /) might be a file, and
Receipts/ might be a directory.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 42

To copy Receipt.pdf to the

Receipts directory, but also

choose a new name for it, we

could use cp Receipt.pdf
Receipts/ReceiptCopy.pdf.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 42

>_

Copying Directories

/

home

aaron

Receipts

D D D

F F F

cp [source] [dest] recursive-r

$ cp –r Receipts/ BackupOfReceipts/

BackupOfReceipts

D D D

F F F

BackupOfReceipts

To copy a directory and all its

contents to another directory run

the cp command as before but
with the –r option.

The -r is a command line option
(also called command line flag)

43
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

that tells cp to copy recursively.

That means, the directory itself,

but also descend into the

directory and copy everything

else it contains, files, other

subdirectories it may have, and
so on.

For example, say I
have a lot of
directories,
subdirectories and

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 43

files under the
receipts directory.
And I’d like to back
up all the contents
into a backup
directory named
BackupOfReceipts.

Run the command – cp

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 43

–r Receipts/

BackupOfReceipts/

This copies all
subdirectories and files
from the receipts folder
into the
backpupofreceipts folder.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 43

>_

Copying Directories

/

home

aaron

Receipts

D D D

F F F

cp [source] [dest] recursive-r

$ cp –r Receipts/ BackupOfReceipts/

BackupOfReceipts

D D D

F F F

Receipts

The name you choose for your

cloned directory must not exist

at your destination. For

example, if we'd already have a

directory at

/home/aaron/BackupOfReceipt

s, this will just move Receipts
there and it would end up at

44
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Documents/BackupOfReceipts
/Receipts/.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 44

>_

Moving Files

/

home

aaron

Receipts
Receipt.pdf

$ cp Receipt.pdf Receipts/

Receipt.pdf

2

1

So, we saw that the copy

operation copies a file from one

place to another, resulting in 2

copies of files – the original one

and the new one in the new

location.

But what if we want to move a file

45
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

from one location to another? So

that the file is not present in the

original location but is only

present in the new location?

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 45

>_

Moving Files

/

home

aaron

Receipts
Receipt.pdf

1

mv [source] [dest] move

$ mv Receipt.pdf Receipts/

$ mv Receipt.pdf OldReceipt.pdf

$ mv Receipts/ OldReceipts/

OldReceipt.pdf

OldReceipts

For this use the mv command.

Mv stands for move.

Run the command mv

Receipt.pdf Receipts/ to move

the file from Receipt.pdf to the

Receipts folder. The file is moved
and there is only 1 copy of file

46
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

available.

To rename a file, we

can use: mv

Receipt.pdf

OldReceipt.pdf

To rename a directory,

we can use the new

name as the

destination, such as:

mv Receipts/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 46

OldReceipts/.

Notice that we did not

have to use the -r flag

with mv to recursively

work with directories?

Mv takes care of that

for us.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 46

>_

Deleting Files and Directories

$ rm Invoice.pdf

$ rm -r Invoices/

/

home

aaron

Invoices

Invoice.pdf

rm remove

To delete a file, we use the rm command. rm comes

from remove. To delete the file
Invoice.pdf, we can use rm Invoice.pdf

To delete a directory like the Invoices directory, we

would use : rm -r Invoices/

Once again, the -r option was used to do this

recursively, deleting the directory, along with its

subdirectories and files. When you copy or delete

47
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

directories, remember to always add the -r option.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 47

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

48
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Create and Manage Hard Links

In this lecture, we’ll look at how Linux manages hard links.

49
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Inodes

$ echo “Picture of Milo the dog” > Pictures/family_dog.jpg

$ stat Pictures/family_dog.jpg

File: Pictures/family_dog.jpg
Size: 49 Blocks: 8 IO Block: 4096 regular file

Device: fd00h/64768d Inode: 52946177 Links: 1
Access: (0640/-rw-r-----) Uid: (1000/ aaron) Gid: (1005/ family)
Context: unconfined_u:object_r:user_home_t:s0
Access: 2021-10-27 16:33:18.949749912 -0500
Modify: 2021-10-27 14:41:19.207278881 -0500
Change: 2021-10-27 16:33:18.851749919 -0500
Birth: 2021-10-26 13:37:17.980969655 -0500

family_dog.jpg

Inode

Permissions Access Time

52946177

To understand hard links and soft links we first must

learn some very basic things about filesystems.

Let's imagine a Linux computer is shared by two

users: aaron and jane. Aaron logs in with his own

username and password, Jane logs in with her own

username and password. This lets them use the

same computer, but have different desktops,

different program settings, and so on. Now Aaron

takes a picture of the family dog and saves it into

/home/aaron/Pictures/family_dog.jpg.

Let's simulate a file like this.

50
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

echo "Picture of Milo the dog" >

Pictures/family_dog.jpg

With this, we created a file at

Pictures/family_dog.jpg and stored the text "Picture

of Milo the dog" inside.

There's a command on Linux that lets us see some

interesting things about files and directories.

stat Pictures/family_dog.jpg

We'll notice an Inode number. What is this?

Filesystems like xfs, ext4, and others, keep track of

data with the help of inodes. Our picture might have

blocks of data scattered all over the disk, but the

inode remembers where all the pieces are stored. It

also keeps track of metadata: things like

permissions, when this data was last modified, last

accessed, and so on. But it would be inconvenient

to tell your computer, "Hey, show me inode

52946177". So, we work with files instead, the one

called family_dog.jpg in this case. The file points to

the inode, and the inode points to all the blocks of

data that we require.

And we finally get to what interests us here.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 50

>_

Hard Links

$ echo “Picture of Milo the dog” > Pictures/family_dog.jpg

$ stat Pictures/family_dog.jpg

File: Pictures/family_dog.jpg
Size: 49 Blocks: 8 IO Block: 4096 regular file

Device: fd00h/64768d Inode: 52946177 Links: 1
Access: (0640/-rw-r-----) Uid: (1000/ aaron) Gid: (1005/ family)
Context: unconfined_u:object_r:user_home_t:s0
Access: 2021-10-27 16:33:18.949749912 -0500
Modify: 2021-10-27 14:41:19.207278881 -0500
Change: 2021-10-27 16:33:18.851749919 -0500
Birth: 2021-10-26 13:37:17.980969655 -0500

family_dog.jpg

Inode

Permissions Access Time

52946177 1

Hard Link

We notice this in the output of our stat command.

There's already one link to our Inode? Yes, there is.

When we create a file, something like this happens:

We tell Linux, "Hey save this data under this

filename: family_dog.jpg"

Linux says: "Ok, we'll group all this file's data under

inode 52946177. Data blocks and inode created.

We'll hardlink file "family_dog.jpg" to Inode

52946177.

Now when we want to read the file:

51
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

"Hey Linux, give me data for family_dog.jpg file"

And linux goes: "Ok, let me see what inode this links

to. Here's all data you requested for inode

52946177"

family_dog.jpg -> Inode 52946177

So the number shown as Links in the output of the stat command is the number of
hard links to this inode from files or filenames.

Easy to understand. But why would we need more

than one hard link for this data?

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 51

>_

Hard Links

family_dog.jpg

Inode

Permissions Access Time

52946177

home

aaron/Pictures jane/Pictures

copy

family_dog.jpg

$ cp –r /home/aaron/Pictures/ /home/jane/Pictures/

$ ln /home/aaron/Pictures/family_dog.jpg /home/jane/Pictures/family_dog.jpg

ln path_to_target_file path_to_link_file

$ rm /home/aaron/Pictures/family_dog.jpg

$ rm /home/jane/Pictures/family_dog.jpg

12

$ stat Pictures/family_dog.jpg

File: Pictures/family_dog.jpg
Size: 49 Blocks: 8 IO Block: 4096 regular file

Device: fd00h/64768d Inode: 52946177 Links: 2
Access: (0640/-rw-r-----) Uid: (1000/ aaron) Gid: (1005/ family)
Context: unconfined_u:object_r:user_home_t:s0
Access: 2021-10-27 16:33:18.949749912 -0500
Modify: 2021-10-27 14:41:19.207278881 -0500
Change: 2021-10-27 16:33:18.851749919 -0500
Birth: 2021-10-26 13:37:17.980969655 -0500

Well, Jane has her own folder of pictures, at

/home/jane/Pictures. How could Aaron share this

picture with Jane? The easy answer, just copy

/home/aaron/Pictures/family_dog.jpg to

/home/jane/Pictures/family_dog.jpg. No problem,

right? But now imagine we must do this for 5000

pictures. We would have to store 20GB of data

twice. Why use 40GB of data when we could use

just 20GB? So how can we do that?

Instead of copying

/home/aaron/Pictures/family_dog.jpg to

52
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

/home/jane/Pictures/family_dog.jpg, we could

hardlink it to /home/jane/Pictures/family_dog.jpg.

The syntax of the command is:

ln path_to_target_file path_to_link_file

The target_file is the file you want to link with. The

link_file is simply the name of this new hard link we

create. Technically, the hard link created at the

destination is a file like any other. The only special

thing about it is that instead of pointing to a new

inode, it points to the same inode as the target_file.

In our imaginary scenario, we would use a

command like:

ln /home/aaron/Pictures/family_dog.jpg

/home/jane/Pictures/family_dog.jpg

Now our picture is only stored once, but the same

data can be accessed at different locations, through

different filenames.

If we run the stat command now we
see the Links are now 2. This is

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 52

because this Inode now has 2 hard
links pointing to it.

Another beautiful thing about hard links is this:

Aaron and Jane share the same 5000 pictures

through hardlinks. But maybe Aaron decides to

delete his hardlink of

/home/aaron/Pictures/family_dog.jpg. What will

happen with Jane's picture? Nothing, she'll still have

access to that data. Why? Because the inode still

has 1 hard link to it (it had 2, now it has 1). But if

Jane also decides to delete her hard link

/home/jane/Pictures/family_dog.jpg, the inode will

have 0 links to it. When there are 0 links, the data

itself will be erased from the disk.

The beauty of this approach is that people that

share hard links can freely delete what they want,

without having a negative impact on other users that

still need that data. But once everyone deletes their

hard links to that data, the data itself will be erased.

So, data is "intelligently removed" only when

EVERYONE involved decides they don't need it

anymore.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 52

>_

Limitations and Considerations

Only hardlink to files, not folders

Only hardlink to files on the same filesystem

$ useradd –a –G family aaron

$ useradd –a –G family jane

$ chmod 660 /home/aaron/Pictures/family_dog.jpg

/home/aaron/file /mnt/Backups/file

Limitations of hard links:

•You can only hardlink to files, not directories.

•You can only hardlink to files on the same filesystem. If you had an external

drive mounted at /mnt/Backups, you would not be able to hardlink a file from

your SSD, at /home/aaron/file to some other file on /mnt/Backups since that's

a different filesystem.

Things to take into consideration when you hardlink:

First, make sure that you have the proper permissions to create the link file at

the destination. In our case, we need write permissions at:
/home/jane/Pictures/.

Second, when you hardlink a file, make sure that all users involved have the

required permissions to access that file. For Aaron and Jane, this might mean

that we might have to add both their usernames to the same group, for

example, "family". Then we'd use a command to let the group called "family"

read and write to this file. You only need to change permissions on one of the
hardlinks. That's because you are actually changing permissions stored by the

53
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Inode. So, once you change permissions at

/home/aaron/Pictures/family_dog.jpg, /home/jane/Pictures/family_dog.jpg and
all other hard links will show the same new sets of permissions.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 53

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

54
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Create and Manage Soft Links

Let's look now at how Linux manages soft links.

55
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Soft Links

C:\Program Files\MyCoolApp\application.exe

Know how when you install a program on Windows,

you might get a shortcut on your desktop? You

double click on that shortcut and that application

gets launched. The application is obviously not

installed on your desktop. It may have its files stored

in C:\Program Files\MyCoolApp directory. And when

you double click the shortcut, this only points to an

executable file at C:\Program

Files\MyCoolApp\application.exe. So, the double

click on that shortcut basically redirects you to the

file C:\Program Files\MyCoolApp\application.exe,

which gets executed.

56
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 56

>_

Soft Links

$ ln –s /home/aaron/Pictures/family_dog.jpg family_dog_shortcut.jpg

$ ls -l

$ readlink family_dog_shortcut.jpg

/home/aaron/Pictures/family_dog.jpg

$ echo “Test” >> fstab_shortcut

bash: fstab_shortcut: Permission denied

[/home/aaron]$ ln –s Pictures/family_dog.jpg relative_picture_shortcut

lrwxrwxrwx. 1 aaron aaron family_dog_shortcut.jpg -> /home/aaron/Pictures..

family_dog.jpg

Inode52946177

family_dog_shortcut.jpg

Hard Link

Soft Link

ln -s path_to_target_file path_to_link_file

$ ls -l

lrwxrwxrwx. 1 aaron aaron family_dog_shortcut.jpg -> /home/aaron/Pictures..

Soft links in Linux are very similar. A hard link

pointed to an inode. But a soft link is nothing more

than a file that points to a path instead. It's almost

like a text file, with a path to a file or directory inside.

The syntax of the command to create a soft link

(also called symbolic link) is the same as before, but

we add the -s or --symbolic option:

ln -s path_to_target path_to_link_file

path_to_target = our soft link will point to this path

(location of a file or directory)

57
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

path_to_link_file = our soft link file will be created

here

For example, to create a symbolic link that points to

the Pictures/family_dog.jpg file, we can run the

command:

ln -s Pictures/family_dog.jpg

family_dog_shortcut.jpg

Now if we list files and directories in long listing

format with the ls –l command, we'll see an output

like this:

The l at the beginning shows us that this is a soft

link. And ls -l even displays the path that the soft link

points to.

If this path is long, ls -l might not show the entire

path. An alternative command to see the path stored

in a soft link is:

readlink path_to_soft_link

So, in our case, it would be:

readlink family_dog_shortcut.jpg

You may also notice that all permission bits, rwx

(read, write, execute) seem to be enabled for this

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 57

file. That's because the permissions of the soft link

do not matter. If you'd try to write to "fstab_shortcut",

this would be denied because the permissions of

the destination file apply and /etc/fstab does not

allow regular users to write here.

In our first command we used an absolute path -

/home/aaron/Pictures/family_dog.jpg.

if we ever change the directory name "aaron" in the

future, to something else, this soft link will break.

You can see a broken link highlighted in red in the

output of the ls –l command.

To tackle this you could create a soft link with a

relative path. Say for example you were in the home

directory of aaron, you could create a soft link using

the relative path of the family_dog file instead of

specifying the complete path.

When someone tries to read

relative_picture_shortcut, they get redirected to

Pictures/family_dog.jpg, relative to the directory

where the soft link is.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 57

>_

Soft Links

Softlink to files and folders

Softlink to files on different filesystem as well

/home/aaron/file /mnt/Backups/file

Since soft links are nothing more than paths pointing to a file, you can also
softlink to directories:

ln -s Pictures/ shortcut_to_directory

Or you can softlink to files/directories on a different filesystem.

58
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

59
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

List, Set, and
Change File Permissions

We’ll now discuss how to list, set, and change standard file permissions in Linux.

60
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Owners and Groups

$ chgrp wheel family_dog.jpg

$ sudo chown jane family_dog.jpg

$ sudo chown aaron:family family_dog.jpg

$ ls -l
-rw-r-----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-rw-r-----. 1 aaron wheel 49 Oct 27 14:41 family_dog.jpg

$ groups
aaron wheel family

$ ls -l
-rw-r-----. 1 jane family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-rw-r-----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

aaron

change group# chgrp group_name file/directory

familywheel

change owner

jane

To understand how file and directory permissions

work on Linux we must first look at file/directory

owners.

If we type

ls -l

we'll see something like this:

Any file or directory is owned by a user. In this

case, we see that the file "family_dog.jpg" is owned

by the user called aaron. Only the owner of a file or

directory can change permissions, in this case,

61
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

aaron. The only exception is the root user (super

user/administrator account), which can change

permissions of any file or directory.

In the second field we can see that this file also has

a group associated with it, the family group. We'll

see later what the role of the group is.

To change the group of a file/directory, we use the

chgrp command (change group).

Syntax:

chgrp group_name file/directory

For example, to change this file's group to "wheel"

we'd use:

chgrp wheel family_dog.jpg

If we do another ls –l, we can see that the group has

now changed to wheel.

We can only change to groups that our user is part

of.

We can see to what groups our current user

belongs with:

groups

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 61

This means we can change the group of our file to:

aaron, wheel or family.

Again, the root user is the exception, which can

change the group of a file or directory to whatever

group exists on the system.

There's also a command to change the user owner

of a file or directory: chown (change owner).

The syntax is:

chown user file/directory

For example, to change ownership of this file to

jane, we'd use:

chown jane family_dog.jpg

But only the root user can change the user owner,

so we'd have to use the sudo command to

temporarily get root privileges:

sudo chown jane family_dog.jpg

With another ls –l, we can see the user has now

changed to jane.

We can change both user owner and group with a

different syntax of chown:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 61

chown user:group file/directory

And since only root can change user ownership,

let's set user to aaron and group to family to revert

all our changes:

sudo chown aaron:family family_dog.jpg

One last ls –l will show us that the owner is aaron

again, and the group is family.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 61

File and Directory Permissions

$ ls -l
- r w x r w x r w x . 1 aaron family 49 Oct 27 14:41 family_dog.jpg

File Type Identifier

DIRECTORY d

REGULAR FILE -

CHARACTER DEVICE c

LINK l

SOCKET FILE s

PIPE p

BLOCK DEVICE b

Our

ls -l

command also shows us the permissions of all files

and directories in our current directory

first character on that line shows us what type of

entry this is: a file, a special file, a directory and so

on. For example, we'd see "d" for a directory, "l" for

a soft link, or "-" for a regular file. Here’s a table that

shows the different identifiers and what they stand

for.

62
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We will learn about some of these file types later in this course.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 62

File and Directory Permissions

rwxrwxrwx

owner
u

Group
g

Others
o

Bit Purpose

r Read File

w Write to File

x Execute (run)

- No permission

The next 9 characters show us permissions:

•First 3: permissions for the user that owns this file.

•Next 3: permissions for the group of this file.

•Last 3: permissions for other users (any user that

is not aaron or not part of the family group).

Let's see what r, w and x mean in two different

contexts, because they act in a certain way for files

and have slightly different behavior for directories.

For a file:

•r means the user, group, or other users can read the contents of this file. -

means they cannot read it.

63
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

•w means the user, group, or other users can write to this file, modify its

contents.

x means the user, group, or other users can execute this file. Some files can

be programs or shell scripts (instructions we can execute). To be able to run

this program or shell script, we must have the x permission. A - permission

here means the program or shell script cannot be executed.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 63

>_

Directory Permissions

$ ls Pictures/

$ mkdir Pictures/Family

$ cd Pictures/

Bit Purpose

r Read Directory

w Write to Directory

x Execute into

- No permission

For directories, we must think differently. Unlike a

file that may contain text to be read, executed,

modified, directories do not have such contents.

Their contents are the files and subdirectories they

hold. So read, write and execute refers to these files

and subdirectories they have inside.

•r means the user, group, or other users can read

the contents of this directory. We need an r

permission to be able to run a command like "ls

Pictures/" and view what files and subdirectories we

have in this directory.

•w means the user, group, or other users can write

64
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

to this directory. We need w to be able to create or

delete entries in that directory (add/delete files or

subdirectories), as when we use mkdir.

•x means we can "execute" into this directory. We

need x to be able to do "cd Pictures/" and "enter"

into the Pictures/ directory.

When directories are meant to be accessible, you'll

normally find both the r and the x permissions

enabled.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 64

>_

Evaluating Permissions

(aaron)$ echo “Add this content to file” >> family_dog.jpg

bash: family_dog.jpg: Permission denied

(aaron)$ su jane

(jane)$ echo “Add this content to file” >> family_dog.jpg

(aaron)$ ls -l

-r--rw----. 1 aaron family 49 family_dog.jpg

(jane)$ cat family_dog.jpg

Picture of Milo the dog

-r--rw----
owner
u

Group
g

Others
o

Whenever you're on a Linux system, you're logged

in as a particular user.

We've changed permissions in an interesting way to

make this easier to understand.

<c> Look at the permissions for the family_dog.jpg

file. It’s set to <c> read only for owner, read write for

group and no permissions for others.

<c> We see the current owner of the file is aaron.

65
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

And we know aaron is part of the family group.

Can aaron write to this file considering the fact that

the owner has read-only permissions only? It might

seem that he should be able to do that, as he is part

of the family group, and that group has rw-

(read/write) permissions.

<c> But if we try to add a line of text to this file, it

fails.

Why is that? Because permissions are evaluated in

a linear fashion, <c> from left to right.

With these permissions in mind:

let's see how the operating system decides if you're

allowed to do something.

It goes through a logic like this:

1.Who is trying to access this file? <c>aaron

2.Who owns this file? <c> aaron

3.Ok, current user, aaron, is the owner. <c> Owner

permissions apply: r--. aaron can read the file but

cannot write to it. <c> Write permission denied!

It does not evaluate the permissions of the group

because it already matched you to the first set of

permissions: the ones for the owner of the file.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 65

<c If you'd be logged in as a different user, for

example jane, the logic would be like this:

1.Who is trying to access this file? <c> jane

2.Who owns this file? aaron

3.Ok, owner permissions do not apply, <c> moving

on to group permissions

Is jane in the family group? Yes. Ok, <c> group

permissions apply: jane has rw- permissions so she

can read and write to file.

If the user trying to access the file is not the owner

and is also not in the "family" group, the last three

permissions would apply, the permissions for other

users.

Now that we have a basic understanding of

permissions, let's move on to how we can change

them to suit our needs.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 65

>_

Adding Permissions

$ chmod u+w family_dog.jpg

$ ls -l
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-rw-rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

change mode# chmod permissions file/directory

Option Examples

user u+ u+w / u+rw / u+rwx

group g+ g+w / g+rw / g+rwx

others o+ o+w / o+rw / o+rwx

u+[list of permissions]

To change permissions, we use the chmod

command. The basic syntax of the chmod command

is:

chmod permissions file/directory

We can specify these permissions in many ways.

Let's start out with simple examples.

We saw that our owner, aaron, cannot write to this

file. Let's fix that. To specify what permissions we

want to add, on top of the existing ones, we use

this syntax:

66
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

•To add permissions for the user (owner): u+[list of

permissions]. Examples: u+w or u+rw or u+rwx.

•To add permissions for the group: g+[list of

permissions].

•To add permissions for other users: o+[list of

permissions].

In our case, we want to add the write permission for

our user owner of the file:

chmod u+w family_dog.jpg

Now the old r-- becomes rw- with the newly added

"w" permission. So we fixed our problem and aaron

can write to this file.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 66

>_

Removing Permissions

$ chmod o-r family_dog.jpg

$ ls -l
-r--rw-r--. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

Option Examples

user u- u-w / u-rw / u-rwx

group g- g-w / g-rw / g-rwx

others o- o-w / o-rw / o-rwx

u-[list of permissions]

•To remove permissions for the user (owner): u-[list

of permissions]. Examples: u-w or u-rw or u-wx.

•To remove permissions for the group: g-[list of

permissions].

•To remove permissions for other users: o-[list of

permissions].

At this point, we have the permission r-- for other

users. That means anyone on this system can read

our family_dog.jpg file. If we want only the user

owner and group to be able to read it, but hide it

from anyone else, we can remove this r permission.

67
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

chmod o-r family_dog.jpg

Now only aaron or the family group can read this

file, no one else.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 67

>_

Setting Exact Permissions

$ chmod g=r family_dog.jpg

$ chmod g=rw family_dog.jpg

$ chmod g= family_dog.jpg

$ ls -l
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-r--r-----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-r--------. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ chmod g-rwx family_dog.jpg

Option Examples

user u= u=w / u=rw / u=rwx

group g= g=w / g=rw / g=rwx

others o= o=w / o=rw / o=rwx

u=[list of permissions]

With + and - we saw that we can add permissions

on top of the preexisting ones or remove some of

them from the preexisting ones.

If a file has rwx and we remove x, we end up with

rw-. If another file has r-x and we remove x, we end

up with r--. If we only care about removing the

execute permission and we don't care what the

other permissions are, this is perfect. But,

sometimes, we'll have a different requirement. We'll

want to make sure that permissions are set exactly

to certain values. We can do this with the = sign.

68
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Just like before, this is done with the format: u=[list

of permissions] or g=[list] or o=[list].

Example: we want to make sure that the group can

only read this file, but not write to it or execute it. We

can run

chmod g=r family_dog.jpg

We can see that, before, group permissions were

rw-. We didn't tell chmod to actually remove the w

permissions, but by saying g=r, we told it to make

the group permissions exactly: r--. This only affects

the group permissions and not the user or other

permissions.

If we'd want to let the group read and write, but not

execute, we'd use:

chmod g=rw family_dog.jpg

We can see that whatever letter is missing, will

make chmod disable permissions for that thing. No

x here means no execute permission will be present

on the file.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 68

Which leads us to the next thing. What if we omit all

letters? No r, no w, no x. This would disable all

permissions for the group:

chmod g= family_dog.jpg

This is like saying "make group permissions all

empty". Another command that does the same thing

is

chmod g-rwx family_dog.jpg

It does the same thing, but following another logic -

remove all these permissions for the group: r, w, and

x.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 68

>_

Chaining Permissions

user: at least read and write

group: only read

others: no permissions

$ chmod u+rw,g=r,o= family_dog.jpg

$ chmod u=rw,g-w family_dog.jpg
user: only read and write

group: remove write

$ ls -l
-r--------. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-rw-r-----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ ls -l
-rw-r-----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

We saw how to

•add permissions with +

•remove with -

•set exactly to: with =

We can group all these specifications in one single

command by separating our permissions for the

user, group and others, with a "," comma.

For example, let's consider this scenario:

1.We want the user to be able to read and write to

69
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

the file; don't care if execute permission is on or off.

2. We want the group to only be able to read

(exactly this permission).

3.And we want others to have no permissions at

all.

Our command could be:

chmod u+rw,g=r,o= family_dog.jpg

Or, let's say:

1.We want the user to only be able to read and

write.

2.But we want to remove the write permissions for

the group and leave all other group permissions as

they were.

3.We don't care about permissions that apply to

other users.

We would use:

chmod u=rw,g-w family_dog.jpg

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 69

>_

Octal Permissions

$ stat family_dog.jpg
File: family_dog.jpg

Size: 49 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 52946177 Links: 1
Access: (0640/-rw-r-----) Uid: (1000/ aaron) Gid: (10/ wheel)

chmod supports another way to set/modify

permissions: through octal values.

First, let's look at another command that shows us

permissions:

stat family_dog.jpg

Here's the list of permissions displayed by stat.

We can see rw-r----- has an octal value of 640

70
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

(ignore the first 0, that's for special permissions like

setuid, setgid and sticky bit). If we break this down,

640 means the user/owner permissions are 6, the

group permissions are 4 and the other permissions

are 0. How are these calculated?

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 70

Octal Permissions

rw-r-----
1 1 1 1 1 1 1 1 11 1 0 1 0 0 0 0 0

6 4 0 Binary Decimal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

rwxr-xr-x
1 1 1 1 1 1 1 1 11 1 1 1 0 1 1 0 1

7 5 5

rwxrwxrwx
1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

7 7 7

Let’s take a closer look at this permission. We have rw for user, r for group and none
set for others. Each permission is represented in binary. If it’s set the binary is set to 1
or else its set to 0. In this case the first part has 110, the second part is 100 and the
third part is 0. Converting this binary to decimal would give us 6 for the first part, 4
for the second part, and 0 for the third part. Here’s a quick binary table for your
reference.

Let’s take another example. This time rwx r-x and r-x. So, the binary format would be
111, 101, 101. The decimal of which is 755.

In the last example it’s read write execute for all, so its 1 for all bits, and so the
decimal value is 777.

71
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Octal Permissions

rw-r-----
4 2 1 4 2 1 4 2 14 2 0 4 0 0 0 0 0

6 4 0

Permission Value

r 4

w 2

x 1

rwxr-xr-x
7 5 5

rwxrwxrwx
7 7 7

4 2 1 4 2 1 4 2 14 2 1 4 0 1 4 0 1

4 2 1 4 2 1 4 2 14 2 1 4 2 1 4 2 1

+ +
=

+ +
=

+ +
=

if you find binary difficult another approach would be to use the octal table. It’s much
simpler. For each permission assign an octal value. For example 4 for read, 2 for write
and 1 for execute. Then whichever permission is set, consider the respective value for
that and for the permission bit not set consider 0. Once done, add up numbers within
each group. 4 + 2 = 6 and 4 + 0 + 0 is 4 and the last group is 0.

Let’s look at using the same approach for the other examples as well. rwx r-x and r-x
gives us 755

and rwxrwxrwx gives us 777.

72
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Octal Permissions

$ chmod 640 family_dog.jpg

$ stat family_dog.jpg

File: family_dog.jpg
Size: 49 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 52946177 Links: 1
Access: (0640/-rw-r-----) Uid: (1000/ aaron) Gid: (10/ wheel)

Once we identify the number we want to set to, we

can use the same in chmod commands as well.

Instead of specifying the permissions for each

group, we could just provide a number like this.

chmod 640 family_dog.jpg

Well, that’s all for now, I will see you in the next one.

73
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

74
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Search for Files

Let’s now look at how to search for files in Linux.

75
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

usr

share

var

log

etc

ssh

\

After you get a little bit familiar with a Linux OS you learn that files are very nicely
organized. If you want to configure your SSH daemon, you'll know you'll find relevant
config files in /etc/ssh/. Need to find logged errors? You go to /var/log. Most of the
time, you'll know where everything is, at least, approximately. So why would you
need to search for files? Let's look at some typical scenarios.

76
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

usr

share

var

log

etc

ssh

\

1.jpg 2.jpg 3.jpg

4.png 5.png 6.png

$ find /usr/share/ -name ’*.jpg’
1.jpg 2.jpg 3.jpg

$ find /lib64/ -size +10M
large-file.txt

$ find /dev/ -mmin -1
abc.txt

Imagine you have a website. You may want to find all your image files. If your
website's directory would be /usr/share/, you could quickly get a list of all .jpg files
with a command like:

In a different scenario, you're almost running out of disk space. This server is hosting
virtual machines. You notice that most of the virtual machines require files under
20GB. You figure that you can search for files that are larger than 20GB to filter out
the abnormally large ones.

We don't have such large files available, but here's how we would look for files larger
than 10 megabytes:

Or let's say you've just updated an application and you're curious to see what files
were changed. You can quickly look at all files that have been modified in the last
minute, with a command like:

Of course, this applies to many other scenarios. Like you could use a similar
command to see what configuration files your system administration team changed in
the last hour.

77
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 77

>_

find

find [/path/to/directory] [search_parameters]

$ find /bin/ -name file1.txt

$ find -name file1.txt

$ find /bin/ -name file1.txt

No path –> search current directory

$ find -name file1.txt /bin/

Go-there Find it

From these examples, it's clear that the command to search for files is find. Let's take
a look at the syntax we'll use throughout this lesson:

For example to find a file named file1.txt in the directory /bin run the command find
/bin –name file1.txt . –name is the search parameter used to specify the name of the
file you are looking for.

You can sometimes skip specifying the path to the directory you want to search
through. And when you do that it searches in the current directory.

The first few times you'll use this command, it may happen quite often that you mix
up the directory path with the search parameters. Meaning, instead of writing find
/bin/ -name file1.txt, you may write find –name file1.txt /bin/. If you find yourself
falling into this trap, just think about it this way, "First I have to go there, then I will
find it". You have to enter your room, and only after you can search for your keys. This
will remind you that you first have to specify the search location and then the search
parameters.

With this basic knowledge out of the way, let's focus on what makes the real magic

78
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

happen, the search parameters.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 78

>_

Search Parameters - Name

find [/path/to/directory] [search_parameters]

$ find -name felix

$ find -iname felix

felix Felix

$ find -name "f*"

felix Felix freya fin James

Wildcard Expression

Let’s look at some other parameters.

We just saw the name parameter being used already. It is used to find files with a
specific name in this case felix.

This however is case sensitive. Meaning it won’t find a file named Felix with a capital
F.

If you’d like the find command to not be case sensitive, or case insensitive add an i
infront of the option to make it iname.

At times you may want to find multiple files that have a pattern in their names. For
example, I want to find all files that start with a lowercase f. For this use a wildcard
expression, which is a starting expression, followed by a star. The * is like a joker card,
for text. It will match anything even if it’s 0 characters or 100. In this case it matches
all names starting with f.

79
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Search Parameters – Modified Time

$ find -mmin [minute] # modified minute

12:0512:0011:5511:50$ find -mmin 5

5 -5

$ find -mmin -5

$ find -mmin +5

+5

$ find -mtime 2 # 24-hour periods

Modification = Create or Edit

Modified Time != Change Time

Modified Contents Change Metadata

$ find -cmin -5 # Change Minute

We already saw, in the examples, a command that looks for files modified in the last
minute. It uses the mmin option. To remember "-mmin" think about "modified
minute”. Let’s understand the options in a bit more detail.

Let’s say the current time is 12:05. To find files modified 5 minutes ago – that is files
modified at the minute 12:01 run the find command with the mmin parameter set to
5. This is going to list files modified in that minute only.

To list all files modified in the last 5 minutes set the minute parameter to -5.

So if there is a -5, there’s surely a +5. What do you think that does? I hope you are not
thinking its going to list files modified 5 minutes into the future.

With the parameter set to +5, the command lists all files modified before 5 minutes
and unto infinity. So any file modified more than 5 minutes ago will be listed.

Another similar option is mtime and it helps search for files modified in days or past
24 hour periods. 0 lists past 24 hours, 1 lists files modified between 24 and 48 hours
and so on.

80
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Its worth noting that modification means creation or edition of files.

Linux also has a thing called "change" time for files. Which might sound like the same
thing as a "modify" time, but it's actually different. Modify time refers to time when
contents have been modified. Change time refers to the time when metadata has
been changed. Metadata is "data about data", so in this case, "data about your file".
This might mean something like file permissions. And this is where change time could
be useful. Imagine you suddenly get errors with some app and you suspect it's
because someone changed some file permissions in the wrong way. You could find
files with permissions changed in the last 5 minutes, with a command like:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 80

>_

Search Parameters – File Size

$ find -size [size]

felix freya fin

$ find -size 512k

c bytes

k kilobytes

M megabytes

G gigabytes

$ find -size +512k

$ find -size -512k

Exactly 512 kb

Greater than 512 kb

Less than 512 kb

10 kb 512 kb 1024 kb

In our initial exercises, we used -size to search for files, based on their size.

To find files of size exactly 512 KB run the find command with the size parameter set
to 512k. K stands for kilobytes. Here’s a quick table showing the different values.
C stands for bytes, k for kilobytes, m for megabytes and g for gigabytes. Note that M
and G are capital letters.

To search for files greater than 512 kb use +512 kb and for files less than 512 kb use –
512 kb.

81
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Search Expressions

$ find -size [size]

felix freya fin

james john jacob

bob bean ben

10 kb 512 kb 1024 kb

10 kb 512 kb 1024 kb

10 kb 512 kb 1024 kb

$ find -name "f*"

$ find -size 512k

$ find -name "f*" -size 512k # AND operator

$ find -name "f*" -o -size 512k # OR operator

The parameters are also at times referred to as search expressions. This is because
you can extend the parameter and add more parts to it to create an expression - like
in Mathematics.

So we learned that we could find files that start with a letter using the wildcard
format like this. So all files starting with the letter f are found.

We also learned we can list files by a size using the size parameter like this. All files of
size 512kb are listed.

However what if I want to find files that start with the filename f and are also of size
512 kb?

For this you can specify multiple options together in a single command like this. Here
I have the name option and the size option. This works like an AND operator. It finds
files that match both of these criteria. In our case the file that starts with the letter f
and is also 512kb is the file named freya.

But what if we want an OR expression? For example I’d like to find files that match

82
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

either of these criteria. All files that either start with f or are of size 512kb. For this
add the –o flag to the command like this.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 82

>_

Search Expressions

$ find –not -name "f*"

felix freya fin

james john jacob

bob bean ben

$ find \! -name “f*"

NOT operator

alternate NOT operator

Another interesting thing you could insert into an

expression is the NOT operator. To make it easy to

understand, let's look at another example. Say you

want to find all files that do not begin with the letter

f. To exclude files beginning with the letter f from our

results, we would use the “-not” flag before the “-

name” flag, followed by “f*.” This would return a list

of file names that do not begin with the letter f.

Another way to write the NOT operator is to use the

“!.” Since One important note, however. Our

command interpreter, bash, when we write "!" it will

83
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

think we want to do some special things, as that's a

special character for it. To tell it "Hey bash, ignore

this special character and just consider it a regular

thing I typed, don't take any special actions" we

escape it. To escape a character, we just add a

backslash "\" in front of it. Our command becomes:
find \! –name “f*”.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 83

>_

Search Expressions

Permissions: 664 = u+rw,g+rw,o+r

$ find –perm 664

$ find –perm -664

$ find -perm /664

find files with exactly 664 permissions

find files with at least 664 permissions

find files with any of these permissions

$ find –perm u=rw,g=rw,o=r

$ find –perm –u=rw,g=rw,o=r

$ find –perm /u=rw,g=rw,o=r

find files with exactly 664 permissions

find files with at least 664 permissions

find files with any of these permissions

We can also search for files based on their

permissions. We’ll use “664” for our permissions.

“664” means this permission: user can read and

write, group can read and write, others can read

(u+rw,g+rw,o+r).

To search for files based on their permissions, we

can use:
•

-perm 664 to look for files which have exactly these

permissions
•

-perm -664 to look for files which have at least

84
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

these permissions. Which means that even if the file

has some extra permissions set, it will still show up

in the search results. But if it has less than these

permissions, it won't show up. For example, 664

denotes that a user should have read and write

permissions. If they only have read permissions but

no write, then find will not show this in the search

result. Think of it as "bare minimum permissions are

these:"
•

-perm /664 to look for files which have any of

these permissions. Unlike the "bare minimum"

condition above, this is more inclusive. For example,

if a user can read the file, but cannot write to it, it will

still show up in search results, as one permission

has been matched, u=r, so it does not matter if other

permissions exist or don't exist.

An alternative way to write each of these is:
•

-perm u=rw,g=rw,o=r
•-perm -u=rw,g=rw,o=r
•-perm /u=rw,g=rw,o=r

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 84

>_

Search Expressions

$ find -perm 600

$ find -perm -100

$ find \! -perm –o=r

$ find -perm /u=r,g=r,o=r

felix freya fin

james john jacob

bob bean ben

u=rw u=rwx,g=rwx u=rw,g=r,o=r

u=rw u=rw,g=rw u=rwx,g=rwx,o=rwx

u=rw u=rw,g=rw u=rw,g=rw,o=rw

Suppose we have a group of files.

We want to find files which only the owner can read

and write, and no other permissions are set, we

would run find –perm 600. This would match the

files, “felix,” “james,” and “bob.”

To find files that the owner can execute at least, but

rest of permissions can be anything, we would run

find –perm -100, which would match only “freya”

and “jacob.”

Now, imagine we want to make sure that nobody

85
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

else can read these files, except users and groups

that own them. In this case, we use the NOT

operator. To look for files that others can NOT

read, we would run find \! –perm –o=r, which

matches “felix,” “james,” “bob,” “freya,” “john,” and

“bean.”

Finally, to find files that can be read by either the user,

or the group, or others -- does not matter who it is

-- but at least one of them should be able to read.

To do this, we would run find –perm /u=r,g=r,o=r.

In this case, all our files match the condition. If no

one can read it, it won't show up in the results.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 85

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

86
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Analyze Text With
Regular Expressions .*

Let’s look at analyzing text using basic regular expressions in Linux.

87
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Regular Expressions

203.102.3.5

5.23

x is an integer

x is greater than 3 (x > 3)

x is less than 8 (x < 8)

x = 4, 5, or 6

In our previous commands, we used simple search

patterns, looking for some specific pieces of text,

like "centos". But what if we need more complex

search conditions?

Imagine we have some application code scattered

in hundreds of files. And we need to extract all IP

addresses used in this app. That would require

more advanced search instructions. An IP has a

form like 203.102.3.5. But we can't just make a

search pattern look for numbers with a . between

them, as this would also match numbers like "5.23",

which are not IP addresses.

88
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

In math, we can say something like:
•

x is an integer

•x is bigger than 3, x>3

•x is smaller than 8, x<8

And this would mean x is either 4, 5, 6 or 7. Regular

expressions work in a similar way. We specify some

conditions, tie all of them together, and our search

pattern only matches what perfectly fits within those

conditions.

Let's start out with some super simple examples and

then build up to slightly more advanced

expressions.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 88

Regex Operators

^

$

.

*

+

{}

?

|

[]

()

[^]

All regular expressions are built with the help of

operators like:

•^ (caret)

•$ (dollar sign)

•. (period)

•* (asterisk)

•+ (plus sign)

•{ } (braces)

•question mark

89
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

•vertical pipe

•brackets

•parenthesis

•brackets with caret

Let's see what each of them does.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 89

>_

^ “The line begins with”

$ less /etc/login.defs $ grep –v '^#' /etc/login.defs

#
Please note that the parameters in this configuration file control the
behavior of the tools from the shadow-utils component. None of these
tools uses the PAM mechanism, and the utilities that use PAM (such as the
passwd command) should therefore be configured elsewhere. Refer to
/etc/pam.d/system-auth for more information.
#

REQUIRED
Directory where mailboxes reside, _or_ name of file, relative to the
home directory. If you _do_ define both, MAIL_DIR takes precedence.
QMAIL_DIR is for Qmail
#
#QMAIL_DIR Maildir
MAIL_DIR /var/spool/mail
#MAIL_FILE .mail

MAIL_DIR /var/spool/mail

UMASK 022

HOME_MODE 0700

PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

UID_MIN 1000
UID_MAX 60000
SYS_UID_MIN 201
SYS_UID_MAX 999

GID_MIN 1000
GID_MAX 60000
SYS_GID_MIN 201
SYS_GID_MAX 999

CREATE_HOME yes

$ grep '^#' /etc/login.defs

In Linux, configuration files can have lines that begin

with a # sign. These are called "commented lines".

They are inactive. The program looking for settings

in such a file will ignore all lines that begin with a #.

But comments are useful for humans, as they let us

see examples of config settings in that file, and

descriptions for what they do, without interfering

with the program that reads them.

This means that we can search for commented

lines, specifically, by creating a regular expression

that looks for all lines that begin with a "#".

90
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

The regular expression would be:

^#

And we can use it in grep like this:

grep '^#' /etc/login.defs

But this doesn't seem to be terribly useful. However,

combined with grep's option to invert results, it

becomes so.

By inverting we tell grep to show us lines that don't

begin with a # sign.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 90

grep -v '^#' /etc/login.defs

And boom! Now we can see exactly what we

wanted: settings actively used.

Imagine how useful this would be in a very long file

with hundreds of comments that make it hard to

spot what you're looking for!

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 90

>_

^ “The line begins with”

$ grep '^PASS' /etc/login.defs

PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

And just to show another example, we could look for

lines that start exactly with these four letters: PASS.

grep '^PASS' /etc/login.defs

91
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

$ “The line ends with”

$ grep '7' /etc/login.defs

$ grep '7$' /etc/login.defs

$ grep 'mail$' /etc/login.defs

mail$

^PASS

022 is the default value, but 027, or even 077, could be considered
HOME_MODE 0700
PASS_WARN_AGE 7

PASS_WARN_AGE 7

MAIL_DIR /var/spool/mail
#MAIL_FILE .mail

Now let's imagine a different scenario. We need to

change a setting that is currently set to "7" days.

Easy enough, we could look for a 7, right?

grep '7' /etc/login.defs

But this shows us some stuff we don't need.

However, we know that this file uses this syntax:

VARIABLE NAME [space] VARIABLE VALUE. The

variable value is last. Which means that if some

variable is set to have a value of 7, this number will

92
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

be the last character on the line.

We can tell our regex to look for a line that ends

with "7", with this expression:

7$

In grep, we'd use it like this:

grep '7$' /etc/login.defs

Clean result!

Just like with ^, with $ we can look for lines that end

with a sequence of characters. To look for all lines

that end with the text "mail":

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 92

grep 'mail$' /etc/login.defs

Please take note how these operators are placed

differently

mail$

^PASS

If you mix up their location you won't get any results,

which can lead to confusion why your regex is not

working. To easily remember their locations, think

like this:

•The "line begins with" operator, ^, should be

placed at the beginning of my search pattern.

The "line ends with" operator, $, goes at the end of

my pattern.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 92

>_

. “Match any ONE character”

$ grep –r 'c.t' /etc/

$ grep –wr ‘c.t’ /etc/

/etc/man_db.conf:# manpath. If no catpath string is used, the catpath will default to the
/etc/man_db.conf:# the database cache for any manpaths not mentioned below unless explicitly
/etc/man_db.conf:# location of catpaths and the creation of database caches; it has no effect
/etc/man_db.conf:#DEFINE cat cat
/etc/man_db.conf:# directives may be given for clarity, and will be concatenated together in
/etc/man_db.conf:# is that you only need to explicitly list extensions if you want to force a
/etc/man_db.conf:# Range of terminal widths permitted when displaying cat pages. If the
/etc/man_db.conf:# terminal falls outside this range, cat pages will not be created (if
/etc/man_db.conf:# If CATWIDTH is set to a non-zero number, cat pages will always be
/etc/man_db.conf:# NOCACHE keeps man from creating cat pages.
/etc/nanorc:## Use cut-from-cursor-to-end-of-line by default.
/etc/nanorc:# set cutfromcursor
/etc/nanorc:## (The old form, 'cut', is deprecated.)
/etc/nanorc:## double click), and execute shortcuts. The mouse will work in the X

Anywhere you add a . in your expression, it will

match any character in that spot. For example:

c.t will match cat, cut, cit, cot, and even c1t or c#t.

But it won't match ct. There must be exactly one

random character between c and t. With c..t there

have to be two characters.

Example grep command:

grep -r 'c.t' /etc/

93
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We can see that even "execute" is a match because

that sequence fits inside that word

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 93

>_

. “Match any ONE character”

$ grep –wr 'c.t' /etc/

/etc/brltty/Input/mn/all.txt:Left: append to existing cut buffer from selected character
/etc/brltty/Input/mn/all.txt:Up: start new cut buffer at selected character
/etc/brltty/Input/mn/all.txt:Down: rectangular cut to selected character
/etc/brltty/Input/mn/all.txt:Right: linear cut to selected character
grep: /etc/libvirt: Permission denied
grep: /etc/wpa_supplicant/wpa_supplicant.conf: Permission denied
/etc/mime.types:application/vnd.commonspace csp cst
/etc/mime.types:# wav: audio/x-wav, cpt: application/mac-compactpro
/etc/mime.types:application/mac-compactpro cpt
grep: /etc/sudo-ldap.conf: Permission denied
grep: /etc/sudo.conf: Permission denied
grep: /etc/sudoers: Permission denied
grep: /etc/sudoers.d: Permission denied
grep: /etc/iscsi/iscsid.conf: Permission denied
grep: /etc/firewalld: Permission denied
/etc/mcelog/triggers/cache-error-trigger: if ["$(cat $F)" != "0"] ; then
/etc/smartmontools/smartd_warning.sh: cat <<EOF

. If we'd only want to match whole words with this

and not parts of words, we can use grep's -w option

grep -w -r 'c.t' /etc/

94
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Special Characters

$ grep '.' /etc/login.defs

SYS_UID_MIN 201
SYS_UID_MAX 999
#
Min/max values for automatic gid selection in groupadd
#
GID_MIN 1000
GID_MAX 60000
System accounts
SYS_GID_MIN 201
SYS_GID_MAX 999
#
If defined, this command is run when removing a user.
It should remove any at/cron/print jobs etc. owned by
the user to be removed (passed as the first argument).
#
#USERDEL_CMD /usr/sbin/userdel_local
#
If useradd should create home directories for users by default
On RH systems, we do. This option is overridden with the -m flag on
useradd command line.
#
CREATE_HOME yes
This enables userdel to remove user groups if no members exist.

And this brings us to an interesting problem. This .

has a special meaning in regex. But what if we need

to search for an actual . in our text?

This won't work:

grep '.' /etc/login.defs

as this regex will basically match each character,

one by one.

95
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

\: Escaping For Special Characters

$ grep '\.' /etc/login.defs

behavior of the tools from the shadow-utils component. None of these
passwd command) should therefore be configured elsewhere. Refer to
/etc/pam.d/system-auth for more information.
home directory. If you _do_ define both, MAIL_DIR takes precedence.
#MAIL_FILE .mail
Default initial "umask" value used by login(1) on non-PAM enabled
systems.
Default "umask" value for pam_umask(8) on PAM enabled systems.
home directories if HOME_MODE is not set.
for increased privacy. There is no One True Answer here: each sysadmin
must make up their mind.
home directories.
If HOME_MODE is not set, the value of UMASK is used to create the mode.
PASS_MAX_DAYS Maximum number of days a password may be
used.
PASS_MIN_DAYS Minimum number of days allowed between
password changes.
PASS_MIN_LEN Minimum acceptable password length.
PASS_WARN_AGE Number of days warning given before a
password expires.

The solution, however, is simple. We look for a

regular . by escaping this. Escaping is how we tell

our regular expression "Hey, don't consider this . a

match any one character operator. Instead,

interpret it as a regular ".".

To escape some special character we just add a

backslash \ before it. Instead of

.

96
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

we write

\.

So our grep command becomes:

grep '\.' /etc/login.defs

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 96

>_

*: Match The Previous Element 0 Or More Times

$ grep -r 'let*' /etc/
/etc/pnm2ppa.conf:# configuration file (/etc/pnm2ppa.conf), and not from
configuration files
/etc/pnm2ppa.conf:#silent 1
/etc/pnm2ppa.conf:# (Older versions of pnm2ppa required larger left and
right margins to avoid
/etc/pnm2ppa.conf:# printer failure with "flashing lights", but this
problem is believed to
/etc/pnm2ppa.conf:#leftmargin 10
/etc/pnm2ppa.conf:# and color ink print cartridges. This changes a
little whenever you
/etc/pnm2ppa.conf:# if there is a horizontal offset between right-to-left
and left-to-right
/etc/pnm2ppa.conf:# density of black ink used: 1 (least ink), 2 (default),
4 (most).
/etc/pnm2ppa.conf:# a calibration file /etc/pnm2ppa.gamma, in which case
these
/etc/pnm2ppa.conf:# gEnh(i) = (int) (pow ((double) i / 256, Gamma) *
256)
/etc/pnm2ppa.conf:# Valid choices are: a4, letter, legal:
/etc/pnm2ppa.conf:#papersize letter # this is the default
/etc/pnm2ppa.conf:#papersize legal

let* letlettlettt

An expression like:

let*

will match le, let, lett, lettt, and so on, no matter how

many "t"s at the end. Another way of saying this is

that the * allows the previous element to:

•be omitted entirely

•appear once

•appear two or more times

97
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

In a grep command, we'd use it like this:

grep -r 'let*' /etc/

The * operator can be paired up with other

operators. For example, to look for something for

sequences that begin with a /, have 0 or more

characters and between, and end with another /, we

could use:

/.*/

Since . matches any ONE character and * says

"previous element can exist 0, 1, 2 or many more

times" we basically allow any sequence of

characters to exist between / and /.

We can now use this in grep:

grep -r '/.*/' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 97

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 97

>_

*: Match The Previous Element 0 Or More Times

$ grep -r '/.*/' /etc/

/etc/man_db.conf:# before /usr/man.
/etc/man_db.conf:MANDB_MAP /usr/man

/var/cache/man/fsstnd
/etc/man_db.conf:MANDB_MAP /usr/share/man

/var/cache/man
/etc/man_db.conf:MANDB_MAP /usr/local/man

/var/cache/man/oldlocal
/etc/man_db.conf:MANDB_MAP /usr/local/share/man

/var/cache/man/local
/etc/man_db.conf:MANDB_MAP /usr/X11R6/man

/var/cache/man/X11R6
/etc/man_db.conf:MANDB_MAP /opt/man /var/cache/man/opt
/etc/nanorc:# set quotestr "^([]*([#:>|}]|//))+"
/etc/nanorc:## include "/path/to/syntax_file.nanorc"
/etc/nanorc:include "/usr/share/nano/*.nanorc"
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1000
PPA Printers
/etc/pbm2ppa.conf:# /etc/pbm2ppa.conf
/etc/pnm2ppa.conf:# /etc/pnm2ppa.conf
/etc/pnm2ppa.conf:# configuration file (/etc/pnm2ppa.conf), and not from
configuration files
/etc/pnm2ppa.conf:# a calibration file /etc/pnm2ppa.gamma, in which case
these
/etc/mailcap:audio/*; /usr/bin/xdg-open %s

Begins with /; has 0 or more characters between; ends with a /

The * operator can be paired up with other

operators. For example, to look for something for

sequences that begin with a /, have 0 or more

characters and between, and end with another /, we

could use:

/.*/

Since . matches any ONE character and * says

"previous element can exist 0, 1, 2 or many more

98
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

times" we basically allow any sequence of

characters to exist between / and /.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 98

>_

+: Match The Previous Element 1 Or More Times

$ grep -r '0*' /etc/

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:#black_ink 1
/etc/pnm2ppa.conf:#color_ink 1
/etc/pnm2ppa.conf:#cyan_ink 1
/etc/pnm2ppa.conf:#magenta_ink 1
/etc/pnm2ppa.conf:#yellow_ink 1
/etc/mailcap:###
/etc/mailcap:### Begin Red Hat Mailcap
/etc/mailcap:###
/etc/mailcap:
/etc/mailcap:audio/*; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:image/*; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:application/msword; /usr/bin/xdg-open %s
/etc/mailcap:application/pdf; /usr/bin/xdg-open %s
/etc/mailcap:application/postscript ; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:text/html; /usr/bin/xdg-open %s ; copiousoutput
/etc/subuid-:aaron:100000:65536
/etc/subuid-:bob:165536:65536
/etc/subuid-:charles:231072:65536
/etc/subuid-:david:296608:65536

Let's say we want to find all sequences of

characters where 0 appears one or more times. We

might be tempted to use:

grep -r '0*' /etc/

But this also matches lines that contain no zeroes at

all. Why is that? Because * lets the previous

character exist one or more times, but also ZERO

times. It basically allows that element to be optional

in our search. So, we need another operator that

99
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

forces the element to exist at least one time, or

many more. + does this:

0+

would find strings like:

0

00

000

0000

and so on

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 99

works like a literal + instead of an operator. Why is

this? By default, grep uses "basic regular

expressions".

Its manual page has this to say: "In basic regular

expressions the meta-characters ?, +, {, |, (, and)

lose their special meaning; instead use the

backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we

have to add a \ before it, make it "\+". Our command

becomes:

grep -r '0\+' /etc/

But this can become confusing really fast. We saw

we already use something like \. to turn the .

operator into a regular . Now we use \ to turn a

regular + into the + operator. It will be hard to keep

track of what to backslash and what not to. So we

can go the easier route, use "extended regex"

instead, which doesn't require us to backslash ?, +,

{, |, (, and).

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 99

We use extended regex by adding the -E option to

grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep

command. Using "egrep" is the same as typing

"grep -E".

egrep -r '0+' /etc/

So you can make it a habit to always use egrep

instead of grep, to avoid mistakes where you forgot

to backslash one of the regex operators.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 99

>_

+: Match The Previous Element 1 Or More Times

$ grep -r '0*' /etc/

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:#black_ink 1
/etc/pnm2ppa.conf:#color_ink 1
/etc/pnm2ppa.conf:#cyan_ink 1
/etc/pnm2ppa.conf:#magenta_ink 1
/etc/pnm2ppa.conf:#yellow_ink 1
/etc/mailcap:###
/etc/mailcap:### Begin Red Hat Mailcap
/etc/mailcap:###
/etc/mailcap:
/etc/mailcap:audio/*; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:image/*; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:application/msword; /usr/bin/xdg-open %s
/etc/mailcap:application/pdf; /usr/bin/xdg-open %s
/etc/mailcap:application/postscript ; /usr/bin/xdg-open %s
/etc/mailcap:
/etc/mailcap:text/html; /usr/bin/xdg-open %s ; copiousoutput
/etc/subuid-:aaron:100000:65536
/etc/subuid-:bob:165536:65536
/etc/subuid-:charles:231072:65536

0+

Let's say we want to find all sequences of

characters where 0 appears one or more times. We

might be tempted to use:

grep -r '0*' /etc/

But this also matches lines that contain no zeroes at

all. Why is that? Because * lets the previous

character exist one or more times, but also ZERO

times. It basically allows that element to be optional

in our search. So, we need another operator that

100
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

forces the element to exist at least one time, or

many more. + does this:

0+

would find strings like:

0

00

000

0000

and so on

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 100

works like a literal + instead of an operator. Why is

this? By default, grep uses "basic regular

expressions".

Its manual page has this to say: "In basic regular

expressions the meta-characters ?, +, {, |, (, and)

lose their special meaning; instead use the

backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we

have to add a \ before it, make it "\+". Our command

becomes:

grep -r '0\+' /etc/

But this can become confusing really fast. We saw

we already use something like \. to turn the .

operator into a regular . Now we use \ to turn a

regular + into the + operator. It will be hard to keep

track of what to backslash and what not to. So we

can go the easier route, use "extended regex"

instead, which doesn't require us to backslash ?, +,

{, |, (, and).

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 100

We use extended regex by adding the -E option to

grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep

command. Using "egrep" is the same as typing

"grep -E".

egrep -r '0+' /etc/

So you can make it a habit to always use egrep

instead of grep, to avoid mistakes where you forgot

to backslash one of the regex operators.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 100

>_

+: Match The Previous Element 1 Or More Times

$ grep -r '0+' /etc/

/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP2 MENU_NEXT_ITEM
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP7 MENU_FIRST_ITEM
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP1 MENU_LAST_ITEM
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP9 MENU_PREV_SETTING
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP3 MENU_NEXT_SETTING
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KP5 MENU_PREV_LEVEL
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KPEnter PREFMENU
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KPPlus PREFSAVE
/etc/brltty/Keyboard/keypad.ktb:bind KP0+!KPMinus PREFLOAD
grep: /etc/libvirt: Permission denied
grep: /etc/wpa_supplicant/wpa_supplicant.conf: Permission denied
/etc/mime.types:application/vnd.d2l.coursepackage1p0+zip
grep: /etc/sudo-ldap.conf: Permission denied
grep: /etc/sudo.conf: Permission denied
grep: /etc/sudoers: Permission denied
grep: /etc/sudoers.d: Permission denied
grep: /etc/iscsi/iscsid.conf: Permission denied
/etc/sane.d/mustek_pp.conf:# - cis1200+ (for Mustek 1200CP+
& OEM versions),
/etc/sane.d/mustek_pp.conf:# scanner Mustek-1200CP+ 0x378 cis1200+
/etc/sane.d/mustek_pp.conf:# scanner mustek-cis1200+ * cis1200+
/etc/sane.d/teco1.conf:scsi "RELISYS" "VM3530+" Scanner * * * 0

0+ 000000

$ man grep
In basic regular expressions the meta-characters
?, +, {, |, (, and) lose their special meaning;
instead use the backslashed versions \?, \+, \{,
\|, \(, and \).

0+

would find strings like:

0

00

000

and so on.

101
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +

works like a literal + instead of an operator. Why is

this? By default, grep uses "basic regular

expressions".

Its manual page has this to say: "In basic regular

expressions the meta-characters ?, +, {, |, (, and)

lose their special meaning; instead use the

backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we

have to add a \ before it, make it "\+". Our command

becomes:

grep -r '0\+' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 101

But this can become confusing really fast. We saw

we already use something like \. to turn the .

operator into a regular . Now we use \ to turn a

regular + into the + operator. It will be hard to keep

track of what to backslash and what not to. So we

can go the easier route, use "extended regex"

instead, which doesn't require us to backslash ?, +,

{, |, (, and).

We use extended regex by adding the -E option to

grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep

command. Using "egrep" is the same as typing

"grep -E".

egrep -r '0+' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 101

So you can make it a habit to always use egrep

instead of grep, to avoid mistakes where you forgot

to backslash one of the regex operators.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 101

>_

+: Match The Previous Element 1 Or More Times

$ grep -r '0\+' /etc/

/etc/pnm2ppa.conf:# The setting is correct when alignments "0" are
correct.
/etc/pnm2ppa.conf:#colorshear 0
/etc/pnm2ppa.conf:#blackshear 0
/etc/pnm2ppa.conf:# 0 = no black ink. This affects black ink bordered by
whitespace
/etc/pnm2ppa.conf:# (i.e., 256 times (i*(1.0/256)) to the power Gamma),
/etc/pnm2ppa.conf:# where (int) i is the ppm color intensity, in the range
0 - 255.
/etc/pnm2ppa.conf:# the corresponding color. Gamma = 1.0 corresponds to
no
/etc/pnm2ppa.conf:#GammaR 1.0 # red enhancement
/etc/pnm2ppa.conf:#GammaG 1.0 # green enhancement
/etc/pnm2ppa.conf:#GammaB 1.0 # blue enhancement
/etc/pnm2ppa.conf:# which gives Gamma = 1.0 - 0.033 * GammaIdx :
/etc/pnm2ppa.conf:#RedGammaIdx 0
/etc/pnm2ppa.conf:#GreenGammaIdx 0
/etc/pnm2ppa.conf:#BlueGammaIdx 0
/etc/pnm2ppa.conf:# by default the printing sweeps are now bidirectional
(unimode 0);
/etc/pnm2ppa.conf:# set their values to 0 to switch off the corresponding
ink type:
/etc/subuid-:aaron:100000:65536
/etc/subuid-:charles:231072:65536

That means, to use "+" as an operator here, we

have to add a \ before it, make it "\+". Our command

becomes:

grep -r '0\+' /etc/

But this can become confusing fast. We saw we

already use something like \. to turn the . operator

into a regular . Now we use \ to turn a regular + into

the + operator. It will be hard to keep track of what

102
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

to backslash and what not to. So, we can go the

easier route, use "extended regex" instead, which

doesn't require us to backslash ?, +, {, |, (, and).

We use extended regex by adding the -E option to

grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep

command. Using "egrep" is the same as typing

"grep -E".

egrep -r '0+' /etc/

So, you can make it a habit to always use egrep

instead of grep, to avoid mistakes where you forgot

to backslash one of the regex operators.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 102

Extended
Regular Expressions .*

Let’s look at analyzing text using basic regular expressions in Linux.

103
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Extended Regular Expressions

$ grep -Er '0+' /etc/

/etc/pnm2ppa.conf:# The setting is correct when alignments "0" are
correct.
/etc/pnm2ppa.conf:#colorshear 0
/etc/pnm2ppa.conf:#blackshear 0
/etc/pnm2ppa.conf:# 0 = no black ink. This affects black ink bordered by
whitespace
/etc/pnm2ppa.conf:# (i.e., 256 times (i*(1.0/256)) to the power Gamma),
/etc/pnm2ppa.conf:# where (int) i is the ppm color intensity, in the range
0 - 255.
/etc/pnm2ppa.conf:# the corresponding color. Gamma = 1.0 corresponds to
no
/etc/pnm2ppa.conf:#GammaR 1.0 # red enhancement
/etc/pnm2ppa.conf:#GammaG 1.0 # green enhancement
/etc/pnm2ppa.conf:#GammaB 1.0 # blue enhancement
/etc/pnm2ppa.conf:# which gives Gamma = 1.0 - 0.033 * GammaIdx :
/etc/pnm2ppa.conf:#RedGammaIdx 0
/etc/pnm2ppa.conf:#GreenGammaIdx 0
/etc/pnm2ppa.conf:#BlueGammaIdx 0
/etc/pnm2ppa.conf:# by default the printing sweeps are now bidirectional
(unimode 0);
/etc/pnm2ppa.conf:# set their values to 0 to switch off the corresponding
ink type:
/etc/subuid-:aaron:100000:65536
/etc/subuid-:charles:231072:65536

$ egrep r '0+' /etc/

We saw we already use something like \. to turn the

. operator into a regular . Now we use \ to turn a

regular + into the + operator. It will be hard to keep

track of what to backslash and what not to. So, we

can go the easier route, use "extended regex"

instead, which doesn't require us to backslash ?, +,

{, |, (, and).

We use extended regex by adding the -E option to

grep

104
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep

command. Using "egrep" is the same as typing

"grep -E".

egrep -r '0+' /etc/

So, you can make it a habit to always use egrep

instead of grep, to avoid mistakes where you forgot

to backslash one of the regex operators.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 104

>_

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3,}' /etc/

000/09/xmldsig#
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="http://www.w3.org/2000/09/xmldsig#" version="0.1"
elementFormDefault="qualified">
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8000 controller which uses
/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
9000 controller which
/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9000 controller which
/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (0000BB in Unicode)
and 183 in
/etc/nanorc:## ISO-8859-1 (0000B7 in Unicode) seem to be good values for
these.
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1000
PPA Printers
/etc/pbm2ppa.conf:# 1000: HP DeskJet 1000Cse,
1000Cxi

To find all strings that contain at least 3 zeros:

0{3,}

egrep -r '0{3,}' /etc/

To find all strings that contain "1" followed by at

most 3 zeroes:

105
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

10{,3}

egrep -r '10{,3}' /etc/

And to find all strings that contain exactly three

zeroes:

0{3}

egrep -r '0{3}' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 105

>_

{}: Previous Element Can Exist “this many” Times

$ egrep -r '10{,3}' /etc/

/etc/pnm2ppa.conf:#xoffset 160
/etc/pnm2ppa.conf:# sweeps of the print head, adjust these in units of
1"/600 (1 dot).
/etc/pnm2ppa.conf:# valid blackness choices are 1 2 3 4; controls the
/etc/pnm2ppa.conf:# density of black ink used: 1 (least ink), 2 (default),
4 (most).
/etc/pnm2ppa.conf:# (i.e., 256 times (i*(1.0/256)) to the power Gamma),
/etc/pnm2ppa.conf:# the corresponding color. Gamma = 1.0 corresponds to
no
/etc/pnm2ppa.conf:#GammaR 1.0 # red enhancement
/etc/pnm2ppa.conf:#GammaG 1.0 # green enhancement
/etc/pnm2ppa.conf:#GammaB 1.0 # blue enhancement
/etc/pnm2ppa.conf:# which gives Gamma = 1.0 - 0.033 * GammaIdx :
/etc/pnm2ppa.conf:# (unimode 1) uncomment the next line . (The command
line options --uni
/etc/pnm2ppa.conf:#unimode 1
/etc/pnm2ppa.conf:#black_ink 1
/etc/pnm2ppa.conf:#color_ink 1
/etc/pnm2ppa.conf:#cyan_ink 1
/etc/pnm2ppa.conf:#magenta_ink 1
/etc/pnm2ppa.conf:#yellow_ink 1
/etc/subuid-:aaron:100000:65536
/etc/subuid-:bob:165536:65536
/etc/subuid-:charles:231072:65536

To find all strings that contain "1" followed by at

most 3 zeroes:

10{,3}

egrep -r '10{,3}' /etc/

Note: This will also match 1s followed by no zeroes.

106
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

And to find all strings that contain exactly three

zeroes:

0{3}

egrep -r '0{3}' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 106

>_

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3}' /etc/

/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="http://www.w3.org/2000/09/xmldsig#" version="0.1"
elementFormDefault="qualified">
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8000 controller which uses
/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
9000 controller which
/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9000 controller which
/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (0000BB in Unicode)
and 183 in
/etc/nanorc:## ISO-8859-1 (0000B7 in Unicode) seem to be good values for
these.
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1000
PPA Printers
/etc/pbm2ppa.conf:# 1000: HP DeskJet 1000Cse,
1000Cxi
/etc/pbm2ppa.conf:#version 1000
/etc/pnm2ppa.conf:#version 1000
/etc/subuid-:aaron:100000:65536

And to find all strings that contain exactly three

zeroes:

0{3}

egrep -r '0{3}' /etc/

107
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

?: Make The Previous Element Optional

$ egrep -r 'disabled?' /etc/

t to 0 to disable polling.
/etc/vmware-tools/tools.conf.example:# Set to true to disable the
deviceHelper plugin.
/etc/vmware-tools/tools.conf.example:#disabled=false
/etc/containers/storage.conf:# Value 0% disables
/etc/dleyna-server-service.conf:# 0 = disabled
/etc/dleyna-server-service.conf:# You can't enable levels disabled at
compile time
/etc/dleyna-server-service.conf:# If netf is enabled but the list is
empty, it behaves as disabled.
/etc/tuned/tuned-main.conf:# Dynamicaly tune devices, if disabled only
static tuning will be used.
/etc/tuned/tuned-main.conf:# Recommend functionality, if disabled
"recommend" command will be not
/etc/enscript.cfg:# Enable / disable page prefeed.
grep: /etc/firewalld: Permission denied
/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being
disabled
/etc/smartmontools/smartd.conf:# -o VAL Enable/disable automatic
offline tests (on/off)
/etc/smartmontools/smartd.conf:# -S VAL Enable/disable attribute
autosave (on/off)
/etc/smartmontools/smartd_warning.sh:# Plugin directory (disabled if
empty)

? will let the previous element exist precisely 0 or 1

times. This basically makes it optional: it can exist

once, or not at all.

Let's say we're trying to find all text that says

"disabled" or "disable". This means the last "d" is

optional, so we can write an expression like:

disabled?

To use in grep:

108
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

egrep -r 'disabled?' /etc/

Note that this also matches the
word “disables.” This is a case where
the letter “d” did not come at the
end, and “disable” still matches.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 108

>_

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3,5}' /etc/

000/09/xmldsig#
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="http://www.w3.org/2000/09/xmldsig#" version="0.1"
elementFormDefault="qualified">
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8000 controller which uses
/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
9000 controller which
/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9000 controller which
/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (0000BB in Unicode)
and 183 in
/etc/nanorc:## ISO-8859-1 (0000B7 in Unicode) seem to be good values for
these.
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1000
PPA Printers
/etc/pbm2ppa.conf:# 1000: HP DeskJet 1000Cse,
1000Cxi

0{min,max}

In an expression like

0{min,max}

to find a match, zero has to exist at least min times

and at most max times.

To find all strings that contain 3, 4 or 5 zeroes:

0{3,5}

109
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

egrep -r '0{3,5}' /etc/

To find all strings that contain at least 3 zeros:

0{3,}

egrep -r '0{3,}' /etc/

To find all strings that contain "1" followed by at

most 3 zeroes:

10{,3}

egrep -r '10{,3}' /etc/

And to find all strings that contain exactly three

zeroes:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 109

0{3}

egrep -r '0{3}' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 109

>_

|: Match One Thing Or The Other

$ egrep -r 'enabled|disabled' /etc/

/etc/vmware-tools/tools.conf.example:# disabled.
/etc/vmware-tools/tools.conf.example:#disabled=false
/etc/dleyna-server-service.conf:# 0 = disabled
/etc/dleyna-server-service.conf:# You can't enable levels disabled at
compile time
/etc/dleyna-server-service.conf:netf-enabled=false
/etc/dleyna-server-service.conf:# If netf is enabled but the list is
empty, it behaves as disabled.
/etc/tuned/tuned-main.conf:# Dynamicaly tune devices, if disabled only
static tuning will be used.
/etc/tuned/tuned-main.conf:# Recommend functionality, if disabled
"recommend" command will be not
/etc/tuned/tuned-main.conf:# /etc/sysctl.conf. If enabled, these sysctls
will be re-appliead
grep: /etc/firewalld: Permission denied
/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being
disabled
/etc/mcelog/mcelog.conf:dimm-tracking-enabled = yes
/etc/mcelog/mcelog.conf:socket-tracing-enabled = yes
/etc/smartmontools/smartd_warning.sh:# Plugin directory (disabled if
empty)
/etc/nanorc:## To make sure an option is disabled, use "unset <option>".

If we'd want to match "enabled" or "disabled", we

could use

enabled|disabled

So this basically matches what it finds on its left side

or its right side.

egrep -r 'enabled|disabled' /etc/

110
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

|: Match One Thing Or The Other

$ egrep -ir 'enabled?|disabled?' /etc/

grep: /etc/firewalld: Permission denied
/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being
disabled
/etc/mcelog/mcelog.conf:# Enable DIMM-tracking
/etc/mcelog/mcelog.conf:dimm-tracking-enabled = yes
/etc/mcelog/mcelog.conf:# Disable DIMM DMI pre-population unless supported
on your system
/etc/mcelog/mcelog.conf:socket-tracing-enabled = yes
/etc/smartmontools/smartd.conf:# First ATA/SATA or SCSI/SAS disk. Monitor
all attributes, enable
/etc/smartmontools/smartd.conf:# -o VAL Enable/disable automatic
offline tests (on/off)
/etc/smartmontools/smartd.conf:# -S VAL Enable/disable attribute
autosave (on/off)
/etc/smartmontools/smartd_warning.sh:# Plugin directory (disabled if
empty)
/etc/nanorc:## Please note that you must have configured nano with --
enable-nanorc
/etc/nanorc:## To make sure an option is disabled, use "unset <option>".
/etc/nanorc:## When soft line wrapping is enabled, make it wrap lines at
blanks
/etc/nanorc:## Enable vim-style lock-files. This is just to let a vim
user know you

And we could combine this with our previous trick

(make last "d" letter optional), to also find variations

like enable/enabled, disable/disabled:

egrep -r 'enabled?|disabled?' /etc/

111
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

[]: Ranges Or Sets

$ egrep -r 'c[au]t' /etc/

/etc/man_db.conf:# Range of terminal widths permitted when displaying cat
pages. If the
/etc/man_db.conf:# terminal falls outside this range, cat pages will not
be created (if
/etc/man_db.conf:# If CATWIDTH is set to a non-zero number, cat pages will
always be
/etc/man_db.conf:# NOCACHE keeps man from creating cat pages.
/etc/nanorc:## Use cut-from-cursor-to-end-of-line by default.
/etc/nanorc:# set cutfromcursor
/etc/nanorc:## (The old form, 'cut', is deprecated.)
/etc/nanorc:## double click), and execute shortcuts. The mouse will work
in the X
/etc/nanorc:## Don't display the helpful shortcut lists at the bottom of
the screen.
/etc/nanorc:## (The old form, 'justifytrim', is deprecated.)
/etc/nanorc:## Disallow file modification. Why would you want this in an
rcfile? ;)
/etc/nanorc:# bind M-B cutwordleft main
/etc/nanorc:# bind M-N cutwordright main
/etc/mailcap:application/msword; /usr/bin/xdg-open %s
/etc/mailcap:application/pdf; /usr/bin/xdg-open %s
/etc/mailcap:application/postscript ; /usr/bin/xdg-open %s

[a-z] [0-9] [abz954]

Now it's time to see how we can put all this

knowledge to use and combine multiple regex

operators to fine-tune our searches.

But first, let's learn about ranges and sets. A range

is specified in the form of:

[a-z] - this will match any one lowercase letter, from

a,b,c,d,e… to z

[0-9] - will match any one digit from 0,1,2… to 9

112
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

A set is specified in this form:

[abz954] will match any one character within, a, b,

z, 9, 5 or 4

So, to find all strings that contain the text cat or cut,

we'd use:

c[au]t

egrep -r 'c[au]t' /etc/'

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 112

>_

[]: Ranges Or Sets

$ egrep -r '/dev/.*' /etc/

/etc/smartmontools/smartd.conf:#/dev/twa0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:# On FreeBSD /dev/tws0 should be used
instead
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/hdc,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/hdc,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/1 -a -s L/../../7/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/2 -a -s L/../../7/02
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/3 -a -s L/../../7/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/1 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/2 -a -s L/../../2/03
/etc/smartmontools/smartd_warning.sh: hostname=`eval $cmd 2>/dev/null` ||
continue
/etc/smartmontools/smartd_warning.sh: dnsdomain=`eval $cmd 2>/dev/null`
|| continue
/etc/smartmontools/smartd_warning.sh: nisdomain=`eval $cmd 2>/dev/null`
|| continue
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "exec '$SMARTD_MAILER'
</dev/null"

With ranges and sets we can make our searches

both wide, and specific, even at the same time. For

example, let's ask ourselves: how would we find all

special device files which have names like

/dev/sda1 or similar? We could think like this: find all

strings that contain "/dev/" followed by any random

characters:

/dev/.*

113
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

egrep -r '/dev/.*' /etc

But this matches weird stuff. .* is "greedy" matching

way too many things after it captures what we're

looking for. So, we can make our search wide

enough to catch all /dev devices, but specific

enough to only capture the parts we need. We do

this with ranges.

We can say: "after /dev/ match any number (*) of

lowercase letters, from a to z.

/dev/[a-z]*

egrep -r '/dev/[a-z]*' /etc/

Looks a little bit better, but we see some things are

still missed. /dev/twl is matched instead of the entire

/dev/twl0. How can we catch the digits at the end

too? Easy, we specify that a digit from 0 to 9 should

exist there

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 113

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9]' /etc/

But now we run into another problem. Only things

that have a digit at the end are matched with this

new regex. We'll only find /dev/sda1 but not

/dev/sda. This is an easy fix, we just make the digit

at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 113

>_

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*' /etc/

/etc/smartmontools/smartd.conf:#/dev/twa0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:# On FreeBSD /dev/tws0 should be used instead
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/hdc,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/hdc,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/1 -a -s L/../../7/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/2 -a -s L/../../7/02
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/3 -a -s L/../../7/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/1 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/2 -a -s L/../../2/03
/etc/smartmontools/smartd_warning.sh: hostname=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: dnsdomain=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: nisdomain=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "exec '$SMARTD_MAILER' </dev/null"

We can say: "after /dev/ match any number (*) of

lowercase letters, from a to z.

/dev/[a-z]*

egrep -r '/dev/[a-z]*' /etc/

Looks a little bit better, but we see some things are

still missed. /dev/twa is matched instead of the

114
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

entire /dev/twa0. How can we catch the digits at the

end too? Easy, we specify that a digit from 0 to 9

should exist there

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9]' /etc/

But now we run into another problem. Only things

that have a digit at the end are matched with this

new regex. We'll only find /dev/sda1 but not

/dev/sda. This is an easy fix, we just make the digit

at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 114

>_

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*[0-9]' /etc/

/etc/sane.d/umax_pp.conf:# /dev/ppi1, ...
/etc/sane.d/fujitsu.conf:#scsi /dev/sg1
/etc/sane.d/v4l.conf:/dev/bttv0
/etc/sane.d/v4l.conf:/dev/video0
/etc/sane.d/v4l.conf:/dev/video1
/etc/sane.d/v4l.conf:/dev/video2
/etc/sane.d/v4l.conf:/dev/video3
/etc/sane.d/gphoto2.conf:port=serial:/dev/ttyd1
/etc/sane.d/kodak.conf:#scsi /dev/sg1
/etc/sane.d/ma1509.conf:#/dev/uscanner0
/etc/sane.d/mustek_usb.conf:#/dev/usbscanner0
/etc/sane.d/snapscan.conf:# For SCSI scanners specify the generic device, e.g. /dev/sg0 on Linux.
/etc/sane.d/snapscan.conf:# /dev/sg0
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# For example /dev/twe0, /dev/twe1, and so on.
/etc/smartmontools/smartd.conf:#/dev/twa0 -d 3ware,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/twa0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:# On FreeBSD /dev/tws0 should be used instead
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,1 -a -s L/../../2/03

Easy, we specify that a digit from 0 to 9 should exist

there

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9]' /etc/

But now we run into another problem. Only things

that have a digit at the end are matched with this

new regex. We'll only find /dev/sda1 but not

115
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

/dev/sda. This is an easy fix, we just make the digit

at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 115

>_

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*[0-9]?' /etc/

/etc/smartmontools/smartd.conf:#/dev/twa0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:# On FreeBSD /dev/tws0 should be used instead
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/twl0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/hdc,0 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/hdc,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/1 -a -s L/../../7/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/2 -a -s L/../../7/02
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/3 -a -s L/../../7/03
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/1 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:#/dev/sdd -d hpt,1/4/2 -a -s L/../../2/03
/etc/smartmontools/smartd_warning.sh: hostname=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: dnsdomain=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: nisdomain=`eval $cmd 2>/dev/null` || continue
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "$cmd </dev/null"
/etc/smartmontools/smartd_warning.sh: "$cmd" </dev/null
/etc/smartmontools/smartd_warning.sh: echo "exec '$SMARTD_MAILER' </dev/null"

This is an easy fix, we just make the digit at the end

optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

116
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

(): Subexpressions

$ egrep -r '/dev/[a-z]*[0-9]?' /etc/

/etc/sane.d/dc25.conf:#port=/dev/tty0p0
/etc/sane.d/dc25.conf:#port=/dev/tty01
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/dmc.conf:/dev/camera
/etc/sane.d/umax.conf:/dev/scanner
/etc/sane.d/umax.conf:/dev/usbscanner
/etc/sane.d/epjitsu.conf:#usb /dev/usb/scanner0
/etc/sane.d/epjitsu.conf:# if echo "$nal" | grep -q
'\.nal$' - 2>/dev/null; then
/etc/sane.d/epson.conf:#usb /dev/usbscanner0
/etc/sane.d/epson.conf:#usb /dev/usb/scanner0
/etc/sane.d/umax1220u.conf:#/dev/scanner
/etc/sane.d/umax1220u.conf:#/dev/usb/scanner0
/etc/sane.d/umax_pp.conf:# device : /dev/parport0, /dev/parport1,
/etc/sane.d/umax_pp.conf:# on *BSD, you may provide the device name of the
ppi device: /dev/ppi0,
/etc/sane.d/umax_pp.conf:# /dev/ppi1, ...
/etc/sane.d/fujitsu.conf:#scsi /dev/sg1
/etc/sane.d/fujitsu.conf:#usb /dev/usb/scanner0
/etc/sane.d/v4l.conf:/dev/bttv0
/etc/sane.d/v4l.conf:/dev/video0
/etc/sane.d/v4l.conf:/dev/video1
/etc/sane.d/v4l.conf:/dev/video2

1+2*3

1+6 = 7

(1+2)*3

3*3 = 9

In math we can see this:

1+2*3

This is 1+6=7. That's because, first, multiplication

will be done, and then, addition. But what if we first

want to add 1+2 and then multiply by 3? We write:

(1+2)*3

117
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

This will be 3*3=9.

In regex we can do a very similar thing.

Let's take a look at our last expression:

egrep -r '/dev/[a-z]*[0-9]?' /etc/

If we scroll up, we'll see we still don't match

everything we need perfectly:

/dev/tty0p0

p0 is left out. Why is that? Because our expression,

after it finds /dev/ matches any number of a to z

characters, then a digit at the end. And that's it,

that's where the match ends. So, in /dev/tty0p0 after

that first 0 is hit our regex is happy with the partial

result. How could we correct this?

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 117

>_

(): Subexpressions

$ egrep -r '/dev/([a-z]*[0-9]?)*' /etc/

/etc/sane.d/coolscan3.conf:#scsi:/dev/scanner
/etc/sane.d/coolscan3.conf:#usb:/dev/usbscanner
/etc/sane.d/dc210.conf:port=/dev/ttyS0
/etc/sane.d/dc210.conf:#port=/dev/ttyd1
/etc/sane.d/dc210.conf:#port=/dev/term/a
/etc/sane.d/dc210.conf:#port=/dev/tty0p0
/etc/sane.d/dc210.conf:#port=/dev/tty01
/etc/sane.d/dc240.conf:port=/dev/ttyS0
/etc/sane.d/dc240.conf:#port=/dev/ttyd1
/etc/sane.d/dc240.conf:#port=/dev/term/a
/etc/sane.d/dc240.conf:#port=/dev/tty0p0
/etc/sane.d/dc240.conf:#port=/dev/tty01
/etc/sane.d/dc25.conf:port=/dev/ttyS0
/etc/sane.d/dc25.conf:#port=/dev/ttyd1
/etc/sane.d/dc25.conf:#port=/dev/term/a
/etc/sane.d/dc25.conf:#port=/dev/tty0p0
/etc/sane.d/dc25.conf:#port=/dev/tty01
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/dmc.conf:/dev/camera
/etc/sane.d/umax.conf:/dev/scanner
/etc/sane.d/umax.conf:/dev/usbscanner

[a-z]*[0-9]?

tty0p0

We could tell it that after /dev/ we have some letters,

and a digit at the end, but after that, the same thing

can repeat 0,1,2,3 or more times. There can be

other sequences of letters followed by a digit. This

way, /dev/tty0 would match first, then p0 will be

added to this match by that repetition.

So, we would basically want to say that this part of

the regex:

[a-z]*[0-9]?

118
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

should look for this pattern existing 0, 1, 2, 3 or

many more times, so it can match things like tty0p0.

What makes regex look for something to exist 0 or

more times? The *. But if we add it at the end, we

get

[a-z]*[0-9]?*

This isn't good, as the * would apply to the previous

element only, and we want to apply it to our whole

construct here. Again, easy solution. We just wrap

our construct in () and this way, * will apply to our

entire subexpression wrapped in parentheses,

instead of the last element only.

([a-z]*[0-9]?)*

egrep -r '/dev/([a-z]*[0-9]?)*' /etc/

And now we get a full match for strings like

/dev/tty0p0.

And if we scroll up in our result list, we'll still find

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 118

some things that don't quite work

like /dev/ttyS0 with the S0 not matching because we

didn't include uppercase letters in our regex.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 118

>_

(): Subexpressions

$ egrep -r egrep -r '/dev/(([a-z]|[A-Z])*[0-9]?)*' /etc/

/etc/sane.d/coolscan3.conf:#scsi:/dev/scanner
/etc/sane.d/coolscan3.conf:#usb:/dev/usbscanner
/etc/sane.d/dc210.conf:port=/dev/ttyS0
/etc/sane.d/dc210.conf:#port=/dev/ttyd1
/etc/sane.d/dc210.conf:#port=/dev/term/a
/etc/sane.d/dc210.conf:#port=/dev/tty0p0
/etc/sane.d/dc210.conf:#port=/dev/tty01
/etc/sane.d/dc240.conf:port=/dev/ttyS0
/etc/sane.d/dc240.conf:#port=/dev/ttyd1
/etc/sane.d/dc240.conf:#port=/dev/term/a
/etc/sane.d/dc240.conf:#port=/dev/tty0p0
/etc/sane.d/dc240.conf:#port=/dev/tty01
/etc/sane.d/dc25.conf:port=/dev/ttyS0
/etc/sane.d/dc25.conf:#port=/dev/ttyd1
/etc/sane.d/dc25.conf:#port=/dev/term/a
/etc/sane.d/dc25.conf:#port=/dev/tty0p0
/etc/sane.d/dc25.conf:#port=/dev/tty01
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/u12.conf:# device /dev/usbscanner
/etc/sane.d/dmc.conf:/dev/camera
/etc/sane.d/umax.conf:/dev/scanner
/etc/sane.d/umax.conf:/dev/usbscanner

([a-z]|[A-Z]*[0-9]?)*

So, we could tell our expression to look for

"lowercase letters OR uppercase" with the |

operator.

But writing it like this would be a mistake:

([a-z]|[A-Z]*[0-9]?)*

Because now the * would only apply to [A-Z] and we

need to apply it to our entire [a-z]|[A-Z]. Once again,

119
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

we can wrap in parentheses to fix this.

(([a-z]|[A-Z])*[0-9]?)*

egrep -r '/dev/(([a-z]|[A-Z])*[0-9]?)*' /etc/

Now ttyS0 matches. And if we would go on, we

could fix things like /dev/term/a not matching,

because our regex stops when it encounters the

next /, and so on. This is the kind of logic and fine-

tuning we would go through when fixing our regular

expressions or making them laser-focused on what

we need to find.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 119

>_

[^]: Negated Ranges Or Sets

$ egrep –r 'http[^s]' /etc/
/etc/containers/registries.conf.d/001-rhel-
shortnames.conf:"openshift4/ose-egress-http-proxy" =
"registry.redhat.io/openshift4/ose-egress-http-proxy"
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"rhel8/httpd-
24" = "registry.redhat.io/rhel8/httpd-24"
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"rhscl/httpd-
24-rhel7" = "registry.access.redhat.com/rhscl/httpd-24-rhel7"
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"ubi8/httpd-24"
= "registry.redhat.io/ubi8/httpd-24"
/etc/containers/registries.d/default.yaml:# For reading signatures, schema
may be http, https, or file.
/etc/containers/registries.d/default.yaml:# sigstore:
http://privateregistry.com/sigstore/
/etc/wgetrc:# You can set the default proxies for Wget to use for http,
https, and ftp.
/etc/wgetrc:#https_proxy = http://proxy.yoyodyne.com:18023/
/etc/wgetrc:#http_proxy = http://proxy.yoyodyne.com:18023/
/etc/wgetrc:#ftp_proxy = http://proxy.yoyodyne.com:18023/
/etc/enscript.cfg:# along with Enscript. If not, see
<http://www.gnu.org/licenses/>.
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Home page is:
http://www.smartmontools.org

[abc123]

[a-z]

http[^s] http https

Imagine we want to search for links to website

addresses that don't use encryption. This means we

would want to search for "http" strings, but exclude

"https".

We saw sets are in the form of [abc123] and ranges

[a-z]. If we add a ^ in here, we can negate them, tell

regex "the elements in this set or range should not

exist at this position"

So to look for http links, we could have a regex that

120
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

makes sure http is not followed by the s letter:

http[^s]

egrep -r 'http[^s]' /etc/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 120

>_

[^]: Negated Ranges Or Sets

$ egrep –r '/[^a-z]' /etc/

/etc/smartmontools/smartd_warning.sh: cmd="$plugindir/${ad#@}"
/etc/qemu-ga/fsfreeze-hook:for file in "$FSFREEZE_D"/* ; do
/etc/man_db.conf:MANPATH_MAP /usr/X11R6/bin /usr/X11R6/man
/etc/man_db.conf:MANPATH_MAP /usr/bin/X11 /usr/X11R6/man
/etc/man_db.conf:MANDB_MAP /usr/X11R6/man /var/cache/man/X11R6
/etc/nanorc:## Each user can save his own configuration to ~/.nanorc
/etc/nanorc:## Don't convert files from DOS/Mac format.
/etc/nanorc:# set quotestr "^([]*([#:>|}]|//))+"
/etc/nanorc:## Fix Backspace/Delete confusion problem.
/etc/nanorc:include "/usr/share/nano/*.nanorc"
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1000 PPA Printers
/etc/pbm2ppa.conf:# 1/4 inch margins all around (at 600 DPI)
/etc/pbm2ppa.conf:# 1/4 inch margins all around (at 600 DPI)
/etc/pbm2ppa.conf:# 1/4 inch margins all around (at 600 DPI)
/etc/pnm2ppa.conf:# paper. Units are dots (1/600 inch). Add a positive number of dots to
/etc/pnm2ppa.conf:# sweeps of the print head, adjust these in units of 1"/600 (1 dot).
/etc/pnm2ppa.conf:# gEnh(i) = (int) (pow ((double) i / 256, Gamma) * 256)

https://regexr.com

In this case, we used a set with only one character,

but we can use multiple if we want.

For example, we could tell our pattern: "After a /,

there should not be any lowercase letter":

egrep -r '/[^a-z]' /etc

Keep in mind that for any pattern you're trying to

match, there are multiple regex solutions you may

find. To get this right, you should practice until you

121
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

feel comfortable with regular expressions.

It's also worth noting that regex is not limited to

grep. You can use regular expressions in a lot of

programs that deal with search patterns. For

example, the sed utility also supports regular

expressions.

Additional Resources

https://regexr.com/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 121

Manage Local
User Accounts

Now let's look at how to create, delete, and modify

local user accounts in Linux.

Each person that needs to log in to our Linux server

should have their own, separate, user account. This

allows them to have personal files and directories,

protected by proper permissions. They also get to

choose their own settings for whatever tools they

use. And it also helps us as administrators. We can

limit the privileges of each user to only what they

require to do their job. This can sometimes reduce

or prevent the damage when someone accidentally

122
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

writes the wrong command. And it can help with the

overall security of the system.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 122

>_

Local User Accounts

$ sudo useradd john

$ ls -a /etc/skel
. .. .bash_logout .bash_profile .bashrc

$ useradd --defaults
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes

$ useradd -D

$ cat /etc/login.defs
Please note that the parameters in this configuration file control the
behavior of the tools from the shadow-utils component. None of these
tools uses the PAM mechanism, and the utilities that use PAM (such as
the
passwd command) should therefore be configured elsewhere. Refer to
/etc/pam.d/system-auth for more information.

john

john

/home/john /bin/bash

.bash_logout .bash_profile .bashrc

It will be up to us to manage these user accounts,

which are sometimes simply called "users". So, let's

dive right in and see how we create a new user on a

Linux system. The command that lets us add a new

user is intuitively called useradd. The simplest form

we can use is:

sudo useradd john

where john can be replaced with whatever

username we want to choose for this specific

account.

123
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

After we run this the following things happen:

•A new user called "john" is added to the system

•A new group also called "john" is automatically

created. The group "john" will be set to be the

primary group of the user "john".

•A home directory is created for this account at

/home/john/. This is where John can store his

personal files and subdirectories, plus his program

settings.

•Their default shell will be set to be the program

found at /bin/bash. Whenever John logs in, this is

the application he'll be "dropped into". Effectively,

his entire login session will run inside this app.

•All files from /etc/skel will be copied to the user's

home directory /home/john/. You can explore it with

ls -a /etc/skel/ if you're curious to see what's inside.

We'll see why this so-called "skeleton directory" is

useful, in one of the next lessons.

•The account will never expire. We'll see what this

means, later in this lesson.

All these things happen because the operating

system is configured to take some default actions

for each newly added account. We can explore

these defaults with the following commands:

useradd --defaults

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 123

or equivalent command

useradd -D

Other defaults related to account creation can be

seen by exploring this file:

cat /etc/login.defs

The comments explain what each setting does.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 123

>_

Local User Accounts

$ sudo passwd john
Changing password for user john.
New password:

$ sudo userdel john

$ sudo userdel --remove john $ sudo userdel -r john

$ sudo useradd --shell /bin/othershell --home-dir /home/otherdirectory/ john

$ sudo useradd -s /bin/othershell -d /home/otherdirectory/ john

$ sudo useradd -s /bin/othershell john

Ok, at this point we have an account for "john". But

how does he log in? His account has no password

now. To set a password for him, we can run

sudo passwd john

If later, we want to delete an account:

sudo userdel john

Note, however, that this will only delete the "john"

user account. Also, the group with the same name,

"john" might get auto-removed. But john's home

directory at /home/john/ will remain. And that's

124
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

normal, because his personal files might still be

needed. But if we're certain that those files aren't

necessary anymore, we can make the userdel

command also remove the user's home directory

and his/her mail spool with:

sudo userdel --remove john

or equivalent

sudo userdel -r john

Coming back to the useradd command, if we're not

happy with the defaults, we could choose a different

shell and home directory with a command such as:

sudo useradd --shell /bin/othershell --home-dir

/home/otherdirectory/ john

or equivalent

sudo useradd -s /bin/othershell -d

/home/otherdirectory/ john

Of course, if we only want to choose a different

shell, but keep the default location for the home

directory, we can just pass the shell option:

sudo useradd -s /bin/othershell john

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 124

>_

Local User Accounts

$ cat /etc/passwd
john:x:1001:1001::/home/otherdirectory/:/bin/othershell

$ sudo useradd --uid 1100 smith $ sudo useradd -u 1100 smith

$ ls -l /home/
drwx------. 16 aaron aaron 4096 Dec 16 10:01 aaron
drwx------. 4 jane jane 113 Dec 16 13:00 jane
drwx------. 3 john john 78 Oct 19 19:39 john
drwx------. 3 smith smith 78 Oct 19 19:39 smith

$ ls -ln /home/
drwx------. 16 1000 1000 4096 Dec 16 10:01 aaron
drwx------. 4 1001 1001 13 Dec 16 13:00 jane
drwx------. 3 1002 1002 78 Oct 19 19:39 john
drwx------. 3 1100 1100 78 Oct 19 19:39 smith

These account details, such as usernames, user

IDs, group IDs, preferred shells, home directories

are stored in the file at /etc/passwd. We can see

them if we type:

cat /etc/passwd

We'll see a line like this:

john:x:1001:1001::/home/otherdirectory/:/bin/othersh

ell

The first number, 1001 is the ID number associated

with john's username. The next 1001 is the numeric

125
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

ID of its primary group, also called "john" in this

case. Then we can see the home directory and the

preferred login shell.

useradd will automatically select a proper numeric

ID available, incrementally. For the first user, the ID

will be 1000, for the next one 1001, and so on. If we

want to manually select a different ID, we can use a

command such as:

sudo useradd --uid 1100 smith

or equivalent

sudo useradd -u 1100 smith

The user "smith" will have the numeric ID 1100, but

also the group called "smith" will get a numeric ID of

1100.

If we want to see what username and group owns

files or directories, we can do so with the usual

ls -l /home/

But if we want to see the numeric IDs of the user

and group owners, we can add the -n (numeric ID)

option:

ls -ln /home/

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 125

>_

Local User Accounts

$ id
uid=1000(aaron) gid=1000(aaron) groups=1000(aaron),10(wheel),1005(family)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

$ whoami
aaron

$ sudo useradd --system sysacc

$ sudo userdel -r john

$ sudo userdel -r smith

$ useradd --help
Usage: useradd [options] LOGIN

useradd -D
useradd -D [options]

It might also be useful sometimes to find out more

about the user we're currently logged in as. We can

see the username we're logged in as, plus groups

we're members of, alongside with the respective

IDs, with this command:

id

To just print out the username:

whoami

Up until now, we've created user accounts. But

there's another type we can create, called system

126
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

accounts. To create a system account called

sysacc, we just add the --system option:

sudo useradd --system sysacc

The numeric IDs of system accounts are usually

numbers smaller than 1000. So, we might see an ID

like 976 or 978 for our sysacc account.

Why would we create these? User accounts are

intended for people. System accounts are intended

for programs. So, there will be no home directory

created since it's not needed. Usually, daemons use

system accounts. We might see something like a

database program running under a system account.

Now let's remove these users and their personal

files:

sudo userdel -r john

sudo userdel -r smith

If we ever forget the options for the useradd

command, we can get a quick reminder with:

useradd --help

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 126

>_

Local User Accounts

$ sudo useradd john

$ sudo usermod --home /home/otherdirectory --move-home john

$ sudo usermod -d /home/otherdirectory -m john

$ sudo usermod --login jane john $ sudo usermod -l jane john

$ sudo usermod --shell /bin/othershell jane $ sudo usermod -s /bin/othershell jane

Now let's say we create the user "john" again:

sudo useradd john

But later, we decide that we want to change some

details for this account. The command usermod

(user modify) is used for this purpose.

For example, if we want to change john's home

directory, we can use:

sudo usermod --home /home/otherdirectory/ --

move-home john

or equivalent

127
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

sudo usermod -d /home/otherdirectory/ -m john

The --move-home option ensures that the old

directory will be moved or renamed so that John can

still access his old files. In our case, /home/john/

was renamed to /home/otherdirectory/.

To change the username, from john to jane we can

enter:

sudo usermod --login jane john

or equivalent

sudo usermod -l jane john

To change the user's login shell:

sudo usermod --shell /bin/othershell jane

or equivalent:

sudo usermod -s /bin/othershell jane

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 127

>_

Local User Accounts

$ sudo usermod --lock jane $ sudo usermod -L jane

$ sudo usermod --unlock jane $ sudo usermod -U jane

$ sudo usermod --expiredate 2021-12-10 jane $ sudo usermod -e 2021-12-10 jane

Date format: YEAR-MONTH-DAY

$ sudo usermod --expiredate "" jane $ sudo usermod -e "" jane

An often-used option with usermod is --lock (or equivalent option -L). This

effectively disables the account, but without deleting it. The user will not be

able to log in with his/her password anymore. However, they might still be able
to log in with an SSH key, if such a login method has been previously set up.

sudo usermod --lock jane

sudo usermod -L jane

To cancel this and unlock the account:

sudo usermod --unlock jane

or equivalent

sudo usermod -U jane

To set a date at which a user's account expires, we

128
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

can use

sudo usermod --expiredate 2021-12-10 jane

or equivalent

sudo usermod -e 2021-12-10 jane

After expiration, they won't be able to log in and

need to contact a system administrator to re-enable

their account. If we want to immediately set an

account as expired, we can just choose a date that

is in the past.

This date is in the format YEAR-MONTH-DAY.

To remove the expiration date, just specify an empty

date. Use two quotes " with nothing inside.

sudo usermod --expiredate "" jane

sudo usermod -e "" jane

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 128

>_

Local User Accounts

$ sudo chage --lastday 0 jane $ sudo chage -d 0 jane

$ sudo chage --lastday -1 jane $ sudo chage -d -1 jane

$ sudo chage --maxdays 30 jane $ sudo chage -M 30 jane

$ sudo chage --maxdays -1 jane $ sudo chage -M -1 jane

$ sudo chage --list jane $ sudo chage -l jane

$ sudo userdel -r jane

$ sudo groupdel john chage = change age

We can also set an expiration date on the

password. Please keep in mind that this is not

the same as account expiration. Account

expiration completely disables user logins.

Password expiration forces the user to change their

password next time they log in. They can still use

the account.

If we want to immediately set password as expired,

we can enter this command:

sudo chage --lastday 0 jane

129
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

or equivalent

sudo chage -d 0 jane

"chage" stands for "change age"

Next time Jane logs in, she'll have to change her

password.

If we want to cancel this, unexpire the password:

sudo chage --lastday -1 jane

sudo chage -d -1 jane

If we want to make sure that a user changes their

password once every 30 days, we can use this

command:

sudo chage --maxdays 30 jane

sudo chage -M 30 jane

If we want to make sure their password never

expires, we set maxdays to -1:

sudo chage --maxdays -1 jane

sudo chage -M -1 jane

To see when the account password expires:

sudo chage --list jane

sudo chage -l jane

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 129

In case you followed along with this exercise, delete

the user called "jane" and the group called "john".

sudo userdel -r jane

sudo groupdel john

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 129

Configure User Resource Limits

Now, let's look at managing user resource limits in

Linux.

130
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_ limits.conf

User Resource Limits

$ sudo vim /etc/security/limits.conf #<domain> <type> <item> <value>
#

#* soft core 0
#* hard rss 10000
#@student hard nproc 20
#@faculty soft nproc 20
#@faculty hard nproc 50
#ftp hard nproc 0
#@student - maxlogins 4

trinity hard nproc 10

@developers soft nproc 20

* soft cpu 5

When we have a lot of users logging in to the

system, we may want to impose limits on what

resources they can use. This way, we can ensure

that user A does not use 80% of the CPU leaving

very little to spare for the others.

To set such a limit, we can edit this file:

sudo vim /etc/security/limits.conf

We can see this is well-documented.

Let's move down until we see this:

131
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We can see that the syntax for setting a limit is

domain type item value

Let's break this down into easy-to-understand parts.

First, the domain; what can we specify here?

Usually, one of these three things:

1. Username. In this case, we just simply type the

name of the user, such as trinity.

Example limit for the trinity user:

trinity hard nproc 0

2. Group name. To set a limit for everyone in the

developers group, we just add @ in front of its

name. So we'd write @developers to set such a

group limit.

Example limit for the developers group:

@developers soft nproc 20

3. * will match all. Setting a limit for * basically says

"set this limit for every user on the system". So it's a

way to set a default limit. Why default? Because this

limit will only apply to every user that is not

mentioned in this list. A user limit overrides a * limit.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 131

For example, one * limit can specify that everyone

can only launch 10 processes. But then another

limit, for the user trinity, says she can launch 20

processes. In this case, the limit for everyone will be

10 (default), but for trinity, it will be set at 20.

Example default limit set with *:

* soft cpu 5

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 131

>_ limits.conf

User Resource Limits

$ sudo vim /etc/security/limits.conf #<domain> <type> <item> <value>
#

#* soft core 0
#* hard rss 10000
#@student hard nproc 20
#@faculty soft nproc 20
#@faculty hard nproc 50
#ftp hard nproc 0
#@student - maxlogins 4

trinity hard nproc 30

trinity hard nproc 20
trinity soft nproc 10

trinity - nproc 20

Next is type which can take three different values:

1.hard

2.soft

3.-

A hard limit cannot be overridden by a regular user.

If a hard limit says they can only run 30 processes,

they cannot go above that. It's basically, the top, the

max value of a resource someone can use.

trinity hard nproc 30

A soft limit on the other hand is different. Instead of

132
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

a max value, this is more like the "startup limit", the

initial value for the limit when the user logs in. If a

user has a soft limit of 10 max processes and a hard

limit of 20, the following happens. When they log in,

the limit will be set to 10 processes. But if the user

has some temporary need to increase this, they can

raise it to 11, 12, 15 or 20 processes. This way they

can get a slight increase when absolutely required.

So, they can manually raise it to anything they

require, but never above the hard limit.

trinity hard nproc 20

trinity soft nproc 10

Last, we have the - sign. This specifies that this is

both a hard and a soft limit.

trinity - nproc 20

With this we're saying "Trinity should be able to run

20 processes at most. When she logs in, she should

be able to use up her entire allocation, without

needing to manually raise her limit."

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 132

>_ limits.conf

User Resource Limits

$ sudo vim /etc/security/limits.conf #<domain> <type> <item> <value>
#

#* soft core 0
#* hard rss 10000
#@student hard nproc 20
#@faculty soft nproc 20
#@faculty hard nproc 50
#ftp hard nproc 0
#@student - maxlogins 4

trinity hard nproc 30

trinity hard fsize 1024

trinity hard cpu 1

$ man limits.conf
LIMITS.CONF(5) Linux-PAM Manual
LIMITS.CONF(5)

NAME
limits.conf - configuration file for the

pam_limits module

DESCRIPTION
The pam_limits.so module applies ulimit

limits, nice priority and
number of simultaneous login sessions limit to

user login sessions.
This description of the configuration file

syntax applies to the
/etc/security/limits.conf file and *.conf

files in the
/etc/security/limits.d directory.

The syntax of the lines is as follows:

<domain><type><item><value>

Next up, the item value. This decides what this limit

is for. We can have things such as:

trinity hard nproc 20

nproc sets the maximum number of processes that

can be open in a user session.

trinity hard fsize 1024

133
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

fsize sets the maximum filesize that can be created

in this user session. The size is in KB so 1024 here

means that the maximum file size is 1024KB which

is exactly one Megabyte.

trinity hard cpu 1

cpu sets the limit for the CPU time. This is specified

in minutes. When a process uses 100% of a cpu

core for 1 second, it will use up 1 second of its

allocated time. If it uses 50% of one core for one

second, it will use up 0.5 seconds of its allocation.

Even if a process was open 3 hours ago, it might

have only used 2 seconds of CPU time.

If you want to see more stuff that can be limited just

consult the user manual for this limits.conf file:

man limits.conf

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 133

>_ limits.conf

User Resource Limits

$ sudo vim /etc/security/limits.conf #@student - maxlogins 4

trinity - nproc 3$ sudo -iu trinity

$ ps | less
PID TTY TIME CMD

6314 pts/0 00:00:00 bash
6348 pts/0 00:00:00 ps
6349 pts/0 00:00:00 less

$ ls -a | grep bash | less
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.

Now let's test our knowledge and add a limit for our

user called trinity, to ensure she can open a

maximum number of three processes

Under this line

#@student - maxlogins 4

134
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Add this:

trinity - nproc 3

Make sure there's no # at the beginning of this line.

The vim editor might automatically add it when you

press ENTER to add a new line here. Make sure to

delete the preceding # otherwise the line would be

commented and have no effect. Now,

let's save our file

and exit.

To log in as trinity, we can enter this command:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 134

sudo -iu trinity

-i instructs sudo to do a real log in

-u specifies the user we want to log in as

At this moment, only one process is permanently

running in her session, the Bash shell. So, we

should be able to run two more processes. Let's

launch ps and pipe the output to the less pager.

ps | less

We can see it works and it got us to running three

processes, the max limit. Now what would happen if

we'd try to launch the fourth? Let's press q to quit

the less pager and then try the following:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 134

ls -a | grep bash | less

This would try to launch three new processes, ls,

grep and less, plus Bash already running, would

total 4 processes:

And we'll see this failing, as expected. We cannot

run more than three processes:

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 134

>_

User Resource Limits

$ logout

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 14722
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 14722
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

$ ulimit -u 5000

Let's type

logout

to exit from trinity's session.

If we want to see the limits for our current session,

we can type:

ulimit -a

We have small hints between parentheses. For

example, we can see "-u" displayed for max user

processes. This means that we could type

135
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

ulimit -u 5000

to lower our limit to 5000 processes. By default, a

user can only lower his limits, not raise them. The

exception is when there are hard and soft limits. In

that case, the user can raise his/her limit all the way

up to the hard value, but only once. After the limit is

raised with a ulimit command, the next command

can only lower it. It cannot be raised the second

time, even if the hard limit would allow it.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 135

Manage User Privileges

Now, let's examine how to manage user privileges in

Linux.

136
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Manage User Privileges

$ groups

aaron family wheel

$ sudo gpasswd -a trinity wheel

aaron

familyaaron wheel

trinity

Every time we had to make some important

changes to the system, we used "sudo" in our

commands. That's because only the root user, also

called "superuser" can make changes to important

areas of the operating system. Whenever we put

"sudo" in front of a command, that command runs

as if the root user executed it. So how come our

user is allowed to use sudo?

If we type this command

groups

137
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

we'll see our user is part of the "wheel" group.

Whoever is part of this group is automatically

allowed to use sudo.

This means that the easiest way to give another

user sudo privileges is to add them to the wheel

group. To add our user "trinity" to the "wheel" group:

sudo gpasswd -a trinity wheel

And that's it. Now this user can get administrator

privileges whenever they want. But this gives them

power to do anything they want on our system.

What if we want more fine-tuned control? Then we

could take a different approach.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 137

>_ sudoers

Manage User Privileges

$ sudo gpasswd -d trinity wheel

$ sudo visudo

Allows people in group wheel

to run all commands

%wheel ALL=(ALL) ALL

user/group host=(run_as_user)
command_list

There is a special file at /etc/sudoers that defines

who can use sudo and under what conditions, what

commands they can run, and so on. But we should

not edit this file directly. We use a utility called

visudo. This utility can check if our edits are correct

to help us avoid mistakes in this file.

First, let's remove trinity from the wheel group, to

make sure she can't use sudo anymore, and

instead, define a different sudo policy for her, later.

sudo gpasswd -d trinity wheel

138
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

To start editing the /etc/sudoers file we run:

sudo visudo

This opens in the vim editor. The file is thoroughly

commented, but we're not interested in the first few

parts. So, let's navigate to the end. We'll notice this

line

Allows people in group wheel to run all

commands

%wheel ALL=(ALL) ALL

Now we see why any user added to the "wheel"

group can run any command with sudo.

Let's break down this line into 4 different parts and

analyze what they do:

1.%wheel 2.ALL=3.(ALL) 4.ALL

1. is the user/group. Here we define who this policy

is for.

2. is the host. Here we could specify that these

rules only apply if our server's hostname or IP

address has a specific value. Not useful for our

purposes, so we'll just type ALL for this host field.

3. is the run_as field. Here, we could type a list of

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 138

usernames. Normally, "sudo ls" will run the "ls"

command as root. Because that's what sudo does, it

runs the command after it as a different user. But

sudo can also be used so that "aaron" can run

commands as "jane" or vice versa. We'll see more

about this later. So, if we list "aaron, jane" in this

"run_as" field, then sudo can only be used to run

commands as the user "aaron" or "jane", but not

"root".

4. is the list of commands that can be executed with

sudo.

So we could say the syntax for a policy defined in

the sudoers file is:

user/group host=(run_as_user) command_list

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 138

>_ sudoers

Manage User Privileges

trinity ALL=(ALL) ALL

%developers ALL=(ALL) ALL

$ sudo -u trinity ls /home/trinity
Desktop Documents Downloads Music Pictures

trinity ALL=(aaron,john) ALL

trinity ALL=ALL

trinity ALL=(ALL) /bin/ls, /bin/stat

$ sudo ls

$ sudo stat /bin

$ sudo echo "Test passed?"
Sorry, user trinity is not allowed to execute '/bin/echo Test
passed?' as root on LFCS-CentOS.

trinity ALL= /bin/ls, /bin/stat

%wheel ALL=(ALL) NOPASSWD: ALL

trinity ALL= NOPASSWD:ALL

Now let's go through some examples. To define a

policy for our trinity user and let her run any sudo

command:

trinity ALL=(ALL) ALL

To specify a policy for all users in the developers

group:

%developers ALL=(ALL) ALL

We mentioned sudo lets us run commands as root,

but also as non-root, regular users. For example, to

run the ls /home/trinity/ command as the user

139
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

called trinity we could write:

sudo -u trinity ls /home/trinity/

After -u we specify the username we want to run as.

If this third field is (ALL) then this policy allows

someone to run sudo commands as any user. But if

we'd want trinity to only be able to run sudo

commands as the users aaron or john, we would

write:

trinity ALL=(alex, john) ALL

Also, this is wrapped in () parentheses which hints

us that the field is optional. So, a line like:

trinity ALL= ALL

is also valid.

We mentioned that in the fourth field we can specify

a list of commands. With our previous entries, the

user or group granted sudo privileges could execute

any command. But we could limit them like this:

trinity ALL=(ALL) /bin/ls, /bin/stat

Now trinity could run commands such as:

sudo ls /

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 139

sudo stat /bin/

Only "ls" and "stat" commands will work. If trinity

tries a command such as:

sudo echo "Test passed?"

she will get this error:

Sorry, user trinity is not allowed to execute

'/bin/echo Test passed?' as root on centos-vm.

And since we specified the third field is optional, this

line

trinity ALL=(ALL) /bin/ls, /bin/stat

could also be written like this:

trinity ALL= /bin/ls, /bin/stat

We know that the first time we run a sudo command

in a session, it asks for our current user's password.

In our sudoers file, we see a hint about how we

could get rid of this requirement.

So, we could use the example in the comments:

%wheel ALL=(ALL) NOPASSWD: ALL

And figure out how to apply this for our user trinity. If

we want her to be able to run sudo commands,

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 139

without providing her password, we could write this

line in the sudoers file:

trinity ALL=(ALL) NOPASSWD: ALL

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 139

Manage Access to
the Root Account

Now, let's examine how to manage access to the

Root account in Linux.

140
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

>_

Manage Access to the Root Account

$ sudo ls /root/
anaconda-ks.cfg initial-setup-ks.cfg

$ sudo --login $ sudo -i

$ logout

$ su - $ su -l $ su --login

We already saw one method to temporarily become

root whenever needed. When we run a command

such as

sudo ls /root/

it's basically the same as if the root user would

execute "ls /root/".

But what if we want to log in as root? For a user with

sudo access, we can enter this command:

sudo --login

141
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

or equivalent

sudo -i

And that's it, we're logged in as root. To exit from

root's session, we'll type:

logout

If the user does not have sudo privileges, but knows

root's password, they can use:

su -

su -l

su --login

All these commands do the same thing: log you in

as root.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 141

>_

Manage Access to the Root Account

$ sudo --login

$ su -

$ sudo passwd root

$ sudo passwd --unlock root $ sudo passwd -u root

$ su -

$ sudo passwd --lock root $ sudo passwd -l root

Some systems might have the root account locked.

This does not mean that we cannot use the root

user. It just means that we cannot do a regular log

in, with a password. When root is locked, we can

still use

sudo --login

to log in as root. But we cannot use

su -

as that would ask for root's password, which is

currently locked.

142
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

If we want to allow people to log in as root, with a

password, we have two options:

1. If root never had a password set, we just choose

a new password for it:

sudo passwd root

2. If root had a password set in the past, but then,

the account was locked for some reason, we can

unlock it with:

sudo passwd --unlock root

sudo passwd -u root

After one of these steps, we can run

su -

and type the password for root to log in.

Of course, we could also find ourselves in the

reverse scenario. Imagine this: currently, people can

log in as "root". But we figure that this is a bit

insecure. So, we can lock password-based logins to

the root account with:

sudo passwd --lock root

sudo passwd -l root

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 142

Other logins might still be possible if they were

previously set up. For example, if an administrator

has set up logins with an SSH private key, they'll still

be able to log in even if the root account is locked.

Make sure to only lock root if your user can use

sudo commands. With no root login and no sudo,

you'll find yourself in the situation of not being able

to become root at all, effectively locking yourself out,

not able to change important system settings

anymore.

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 142

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using

this link: https://kode.wiki/linux-labs

143
Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs 144

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: --help
	Slide 20: --help
	Slide 21: Manual Pages With man Command
	Slide 22: Manual Pages With man Command
	Slide 23: Searching For Commands - apropos
	Slide 24: Searching For Commands - apropos
	Slide 25
	Slide 26: TAB: Suggest and Autocomplete
	Slide 27
	Slide 28
	Slide 29: Listing Files and Directories
	Slide 30: Listing Files and Directories
	Slide 31: Listing Files and Directories
	Slide 32: Listing Files and Directories
	Slide 33: Filesystem Tree
	Slide 34: Filesystem Tree
	Slide 35: Absolute Path
	Slide 36: Current / Working Directory
	Slide 37: Current / Working Directory
	Slide 38: Relative Path
	Slide 39: Current / Working Directory
	Slide 40: Creating Files
	Slide 41: Creating Directories
	Slide 42: Copying Files
	Slide 43: Copying Directories
	Slide 44: Copying Directories
	Slide 45: Moving Files
	Slide 46: Moving Files
	Slide 47: Deleting Files and Directories
	Slide 48
	Slide 49
	Slide 50: Inodes
	Slide 51: Hard Links
	Slide 52: Hard Links
	Slide 53: Limitations and Considerations
	Slide 54
	Slide 55
	Slide 56: Soft Links
	Slide 57: Soft Links
	Slide 58: Soft Links
	Slide 59
	Slide 60
	Slide 61: Owners and Groups
	Slide 62: File and Directory Permissions
	Slide 63: File and Directory Permissions
	Slide 64: Directory Permissions
	Slide 65: Evaluating Permissions
	Slide 66: Adding Permissions
	Slide 67: Removing Permissions
	Slide 68: Setting Exact Permissions
	Slide 69: Chaining Permissions
	Slide 70: Octal Permissions
	Slide 71: Octal Permissions
	Slide 72: Octal Permissions
	Slide 73: Octal Permissions
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: find
	Slide 79: Search Parameters - Name
	Slide 80: Search Parameters – Modified Time
	Slide 81: Search Parameters – File Size
	Slide 82: Search Expressions
	Slide 83: Search Expressions
	Slide 84: Search Expressions
	Slide 85: Search Expressions
	Slide 86
	Slide 87
	Slide 88: Regular Expressions
	Slide 89: Regex Operators
	Slide 90: ^ “The line begins with”
	Slide 91: ^ “The line begins with”
	Slide 92: $ “The line ends with”
	Slide 93: . “Match any ONE character”
	Slide 94: . “Match any ONE character”
	Slide 95: Special Characters
	Slide 96: \: Escaping For Special Characters
	Slide 97: *: Match The Previous Element 0 Or More Times
	Slide 98: *: Match The Previous Element 0 Or More Times
	Slide 99: +: Match The Previous Element 1 Or More Times
	Slide 100: +: Match The Previous Element 1 Or More Times
	Slide 101: +: Match The Previous Element 1 Or More Times
	Slide 102: +: Match The Previous Element 1 Or More Times
	Slide 103
	Slide 104: Extended Regular Expressions
	Slide 105: {}: Previous Element Can Exist “this many” Times
	Slide 106: {}: Previous Element Can Exist “this many” Times
	Slide 107: {}: Previous Element Can Exist “this many” Times
	Slide 108: ?: Make The Previous Element Optional
	Slide 109: {}: Previous Element Can Exist “this many” Times
	Slide 110: |: Match One Thing Or The Other
	Slide 111: |: Match One Thing Or The Other
	Slide 112: []: Ranges Or Sets
	Slide 113: []: Ranges Or Sets
	Slide 114: []: Ranges Or Sets
	Slide 115: []: Ranges Or Sets
	Slide 116: []: Ranges Or Sets
	Slide 117: (): Subexpressions
	Slide 118: (): Subexpressions
	Slide 119: (): Subexpressions
	Slide 120: [^]: Negated Ranges Or Sets
	Slide 121: [^]: Negated Ranges Or Sets
	Slide 122
	Slide 123: Local User Accounts
	Slide 124: Local User Accounts
	Slide 125: Local User Accounts
	Slide 126: Local User Accounts
	Slide 127: Local User Accounts
	Slide 128: Local User Accounts
	Slide 129: Local User Accounts
	Slide 130
	Slide 131: User Resource Limits
	Slide 132: User Resource Limits
	Slide 133: User Resource Limits
	Slide 134: User Resource Limits
	Slide 135: User Resource Limits
	Slide 136
	Slide 137: Manage User Privileges
	Slide 138: Manage User Privileges
	Slide 139: Manage User Privileges
	Slide 140
	Slide 141: Manage Access to the Root Account
	Slide 142: Manage Access to the Root Account
	Slide 143
	Slide 144

