Kodekloud.com

)

IKodelKloud

Access the labs: https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Log into local & remote graphical and

text mode consoles

There will be many commands we will use in Linux.
And each command has a lot of command line

switches. How are we supposed to remember them
all?

As we use a command repeatedly, we'll learn
everything about it and memorize what each option
does. But in the beginning, we might forget about
these options after just one or two uses. That's why
Linux gives you multiple ways to access "help
manuals" and documentation, right at the command
line.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Login Methods

Local text-mode console Remote text-mode login

Local graphical-mode console Remote graphical-mode login

So, let's dive right in and start with some simple
concepts.

We're all used to logging in to apps or websites by
providing a username and password. Logging into a
Linux system is pretty much the same, so there's
not much mystery here. We'll look at four ways to
log in:

1.Log into a local Linux system (local text-mode
console).

2.Log into a local Linux system (local graphical-
mode console).

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

3. Log into a remote Linux system (text-mode login)
4.Log into a remote Linux system (graphical-mode
login)

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Console Virtual Terminal Terminal Emulator

You'll often hear terms like "console", "virtual
terminal”, and "terminal emulator". And it may be
hard to understand why they are called this way.

Nowadays, a "console" is just a screen where your
operating system displays some text and where it
allows you to log in or type commands. And a
terminal emulator is nothing more than a graphical
app that runs in a window and does a similar thing
(shows you text output and allows you to type
commands). These terms come from the old days of
computing.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Consoles

Computers were incredibly expensive, so a
university may have had a single one available for
their entire building.

But multiple people could connect to it and do their
work by using physical devices that allowed them to
type text and commands and also display on a
screen what is currently happening. These devices
were consoles or terminals. So instead of buying 25
super expensive computers, you could have just
one, but 25 people could use it, even at the same
time.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Nowadays, consoles and terminals, in Linux, are
usually things that exist in software, rather than
hardware. For example:

When you see Linux boot and a bunch of text
appears on screen, telling you what happens as the
operating system is loading - that's the console.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Virtual Terminals

CTRL + ALT + F2

Cent0S Linux 8
Kernel 4.18.8-385.19.1.el18_4.x86_64 on an xB6_64

Activate the web conszole with: systemctl enable --now cockpit.soc

centos-um login: _

After a Linux machine has booted, if you press
CTRL+ALT+F2 on the keyboard, you'll see a virtual
terminal (vt2).

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Terminal Emulators

aaron@LFCS-CentOS:~

If you have Linux installed on your desktop, with a
graphical user interface, when you want to type
commands you open a terminal emulator.

Let's move back to logins. In practice, most often
you'll log in to remote Linux systems. But let's start
with the less common scenarios.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Local GUI

"Local" is just a tech word for "something that is in
front of you" or "something you can physically
access". A computer on your desk is local. A server
running on Google Cloud is remote.

Usually, when Linux is installed on servers, it is
installed without GUI (Graphical User Interface)
components. There's no mouse pointer, no buttons,
no windows, no menus, nothing of that sort, just
text. But you might sometimes run across servers
that include this GUI. Logging in is super easy, as
it's all "in your face". You'll see a list of users you
can choose from and you can then type your user's

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

password.

Don't forget to log out when you've finished your
work.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Local text console

Oct 19 20:00:2Z on ttyZ
03 ~15 exit

If the device has the typical server-oriented Linux
OS installed, without any GUI components, logging
in (locally) is also easy. You'll usually see something
like this on your screen:

There's no list of users this time, but you can just
type your username and then your password. Note
that you won'’t see your password as you type.

When your work is done, you should type exit to log
out.

Access the labs: https:
https://kode.wiki/linux-labs

10

Kodekloud.com

Remote GUI

Again, most Linux operating systems running on
servers will have no GUI components installed. But
you will sometimes run into exceptions. Connecting
to a remote server, to its graphical user interface is
slightly more tricky. First of all, there is no standard
set in stone. Whoever configured that server chose
their preferred way of dealing with these remote
graphical logins. They could have chosen to install a
VNC (Virtual Network Computing) solution. In this
case, you'd need to download the proper VNC client
(also called "VNC viewer") to connect to it. This
might be TightVNC or RealVNC or something else

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

entirely. It all depends on the VNC server running on
the remote system and what VNC clients your local
operating system supports.

If the administrator of that server wanted to let
Windows users connect easily, it might mean that
they used a solution allowing for RDP connections
(Remote Desktop Protocol). This means you can
just click on Windows' start button, type "Remote
Desktop Connection”, open that app and then enter
the username and password you've been provided.

Whatever it might be, connecting to a remote
graphical console is pretty easy. It all boils down to
downloading the application that lets you do that,
entering the remote system's IP address, followed
by an username and a password.

Access the labs: https:
https://kode.wiki/linux-labs 11

Kodekloud.com

Remote text-mode login

Secure SHell

telnet

Initiating a text-based remote connection to a Linux
system is pretty standard. That's because almost
every Linux server uses the same tool that allows
for remote logins: the OpenSSH daemon (program
that runs in the background, on the server, all the
time). SSH comes from Secure SHell. Until SSH,
something called telnet was the standard. telnet was
highly insecure as it did not encrypt communication
between you and the server you were connecting to.
This meant that anyone on the same network with
you could steal your Linux user password and see
everything you did on that server, during your telnet

Access the labs: https:
https://kode.wiki/linux-labs 12

Kodekloud.com

session.

The SSH protocol uses strong encryption to avoid
this and the OpenSSH daemon is built carefully to
avoid security bugs as much as possible. Long story
short, OpenSSH is used by millions of servers and
has stood the test of time, proving to be very hard to
hack. For these reasons everyone happily uses it
and trusts that it can do a pretty good job at only
letting authorized people log into their operating
systems, while keeping bad people out.

Access the labs: https:
https://kode.wiki/linux-labs

12

Kodekloud.com

SSH login

$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default glen 1000

link/loopback ©0:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_lft forever preferred_!
DCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc |

lid_1ft 1966sec preferred_lft 1966sec

vali
inet6 fe80::a00:27ff:febb:d787/64 scope link noprefixroute

KODEKLOUD

Server

Computer

In case you're following along on your virtual
machine, log in locally (directly from the virtual
machine window) and then enter this command: (ip
a) You'll see what IP your machine uses. I've
outlined the information we’re looking for in yellow.

We'll use this IP —in our case 192.168.0.17 -- to
simulate a situation where we have a server in a

remote location.

Now to recap. We have an SSH daemon (program)

Access the labs: https:
https://kode.wiki/linux-labs

13

Kodekloud.com

running on the server. This listens for any incoming
connections. To be able to connect to this remote
SSH daemon, we'll need something called an SSH
client (yet another program). This client will run on
our current laptop/desktop computer.

Access the labs: https:
https://kode.wiki/linux-labs

13

Kodekloud.com

KODEKLOUD

MacOS & Linux

MacOS systems and Linux-based operating
systems, such as Ubuntu, already have an SSH
client preinstalled. If you're on MacOS or Linux,
open a terminal emulator window.

Access the labs: https:
https://kode.wiki/linux-labs

14

Kodekloud.com

KODEKLOUD

Windows

In the past, if you were running Windows, you
needed to install an SSH client like PuTTY. On the
latest Windows 10 this is no longer necessary as an
SSH client is also preinstalled. If you're on
Windows, click the Start Menu and type "cmd" to
open up Command Prompt.

Access the labs: https:
https://kode.wiki/linux-labs

15

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs

15

Kodekloud.com

KODEKLOUD

$ ssh aaron@192.168.0.17

aaron@192.168.0.17"'s password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Tue Oct 19 20:27:15 2021 from 192.168.0.3
[aaron@LFCS-Cent0S ~]$

To connect to a remote Linux system through SSH, type:

Of course, replace "aaron" with the actual username you created inside your
Linux OS running in the virtual machine. Same with the IP address. From here
on, we'll stay inside this SSH session to go through all the exercises in the
upcoming lessons. Please join me in the demonstration video to see each of
these login methods. I'll see you there.

Access the labs: https:
https://kode.wiki/linux-labs

16

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

17

Kodekloud.com

KODEKLOUD

Read and Use System

Documentation

There will be many commands we will use in Linux.
And each command has a lot of command line

switches. How are we supposed to remember them
all?

As we use a command repeatedly, we'll learn
everything about it and memorize what each option
does. But in the beginning, we might forget about
these options after just one or two uses. That's why
Linux gives you multiple ways to access "help
manuals" and documentation, right at the command
line.

Access the labs: https:
https://kode.wiki/linux-labs

18

Kodekloud.com

KODEKLOUD

$ 1s --help

Usage: 1s [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..
-B, --ignore-backups do not list implied entries ending with ~
ignore=PATTERN do not list implied entries matching shell PATTERN
ibibytes default to 1024-byte blocks for disk usage

on of file status information);
with -1: show ctime and sort by name;
otherwise: sort bv ctime. newest first

$ 1s -1

bin/ libexec/ sbin/
1lib/ local/ share/

Let's say you want to see that long listing format with Is, to get a look at file
permissions. But you forgot what the correct option was. Was it -p for
permissions? We can get a quick reminder with:

Is --help

This will show us a lot of output. But if we scroll up, we'll find what we're
looking for: the -l flag, in this case.

You can see how command line options are sorted alphabetically and
described with short text. That's why the --help option for commands will
very often be helpful when we forget about these options (and we will, as
there are so many of them for each command).

Access the labs: https:
https://kode.wiki/linux-labs

19

Kodekloud.com

KODEKLOUD

$ journalctl --help

journalctl [OPTIONS...] [MATCHES...]
Query the journal.

Options:

--system Show the system journal
--user Show the user journal for the current user
--machine=CONTAINER Operate on local container
--since=DATE Show entries not older than the specified date
--until=DATE Show entries not newer than the specified date
--cursor=CURSOR Show entries starting at the specified cursor
--after-cursor=CURSOR Show entries after the specified cursor
--show-cursor Print the cursor after all the entries

-b --boot[=ID] Show current boot or the specified boot
--list-boots Show terse information about recorded boots

lines 1-27]

PAGE PAGE
upP DOWN

--help will usually show a condensed form of help, with very short
explanations. For Is, that's ok, as it's a very simple command. Other
commands, however, are very complex and we need to read longer
explanations to understand what they do and how we use them.

Let's take journalctl as an example, a command that lets us read system logs.
journalctl --help

will show us this:

We'll notice that this opens in a slightly different way (look at "lines 1-27") in
the bottom left corner. This opened in what Linux calls a "pager". It's simply a

"text viewer" of sorts that lets us scroll up and down with our arrow keys or
PAGE UP, PAGE DOWN. To exit this help page, press q.

Access the labs: https:
https://kode.wiki/linux-labs

20

Kodekloud.com

KODEKLOUD

Manual Pages With man Command

$ man journalctl

| EXAMPLES
Without arguments, all collected logs are shown unfiltered:

journalctl
With one match specified, all entries with a field matching the expression are shown
journalctl _SYSTEMD_UNIT=avahi-daemon.service
If two different fields are matched, only entries matching both expressions at the same time are shown:
journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=28097
If two matches refer to the same field, all entries matching either expression are shown:
journalctl _SYSTEMD_UNIT=avahi-daemon.service _SYSTEMD_UNIT=dbus.service
If the separator "+" is used, two expressions may be combined in a logical OR. The following will show all
messages from the Avahi service process with the PID 28097 plus all messages from the D-Bus service (from any

of its processes):

journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=28097 + _SYSTEMD_UNIT=dbus.service

All important commands in Linux have their own manuals or "man pages". To
access a command's manual enter "man name_of command". In our case,
we'd use:

man journalctl

Now we get:

*Short description of what the command does in NAME.

*General syntax of command in SYNOPSIS

*Detailed description of command, how it works, and so on, in DESCRIPTION.
*Detailed descriptions of command line options in OPTIONS.

*And some manual pages even have some EXAMPLES near the end of the
manual.

Access the labs: https:
https://kode.wiki/linux-labs

21

Kodekloud.com

KODEKLOUD

Manual Pages With man Command

$ man man

The table below shows the section numbers of the manual followed by the types
of pages they contain.

File formats and conventions eg /etc/passwd

Games

Miscellaneous (including macro packages and conventions), e.g. man(7),
groff(7)

System administration commands (usually only for root)

Kernel routines [Non standard]

$ man 1 printf

$ man 3 printf

Sometimes, you will have two man pages with the same name. Example:

printf is a command. But printf is also a function that can be used by
programmers.

Manual pages can fall into one of these categories (sections), and we can see
these by looking at the man page for man itself, by typing man man:

If you want to read the man page about printf, the command, you tell man you
want to consult printf from section 1, like this

man 1 printf

If you want to read about printf, the function, you tell man you want to look at
section 3

man 3 printf

It's useful to know that during online exams, the Linux Foundation will let you

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

use man and --help. Try to use --help if you forgot a command line option as

that gives you the fastest results. Diving deep into a manual page will eat up
more time.

But this is all well and good when we know what command we want to explore.
But what if we can't even remember the name of the command that we need
to use?

Access the labs: https:
https://kode.wiki/linux-labs

22

Kodekloud.com

KODEKLOUD

Searching For Commands -
apropos

$ apropos director $ apropos director
. i i 1s (1) ory contents
directory directories 1s (1p) - tory contents
mcd (1) - change MSDOS directory
3 mdeltree (1) - recursively delete an MSDOS
$ apropos director irectory and its contents

director: nothing appropriate

t

- list direc
list direc

DOS directory
mount of space

$ sudo mandb

dir i
mkdirat (2)

Imagine you forgot the name of the command that
lets you create a new directory. How would you
search for it?

apropos is a command that lets you search through
man pages. It looks at the short descriptions of each
man page and tries to see if it matches the text we
entered. For example, with the next line we can
search for all man pages that have the word
"director" in their short descriptions. We'll use
"director" and not "directory"”. "director" will match
commands that contain the word "directory" but

Access the labs: https:
https://kode.wiki/linux-labs 23

Kodekloud.com

also the ones that contain "directories". So, we
keep it more generic this way.

The first time we would run apropos
director, we'd get an error.

That's because apropos relies on a database. A
program must refresh it periodically. Since we just
started this virtual machine, the database hasn't
been created yet. We can create it manually with:

sudo mandb

On servers that have already run for days, there
should be no need to do this, as it will be done
automatically.

Now the apropos command should work:

apropos director

If we scroll up, we can see the entry we're looking
for: mkdir.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Searching For Commands -
apropos

$ apropos director $ apropos -s 1,8 director

1s (1) - lis irectory contents s - list directory contents
1s (1p) - list directory contents mc - change MSDOS directory
mcd (1) - cha or mdeltree ively delete an
mdeltree (1) - i and i

directory and its contents

mdir (1)

mdu (1)

mkdirat (2)

Sections 1 and 8

But those are a lot of entries. Makes it hard to spot
what we're looking for. You see, apropos doesn't just
list commands. It also lists some other things we
don't need, currently. We see stuff like (2). That
signals that that entry is in section 2 of the man
pages (system calls provided by the Linux kernel).
That's just too advanced for our purposes.
Commands will be found in sections 1 and 8. We
can tell apropos to only filter out results that lead to
commands from these categories. We do this by
using the -s option, followed by a list of the sections
we need.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

apropos -s 1,8 director

And we can spot what we were looking for more
easily.

Notice how mkdir's description contains the word
"directories". If we'd used the word "directory" in
our apropos search, this command wouldn't have
appeared since "directory” wouldn't have matched
"directories". This is something to keep in mind
when you want to make your searches as open as
possible and match more stuff.

Access the labs: https:
https://kode.wiki/linux-labs

24

Kodekloud.com

$ systemctl

add-requires
add-wants
cancel

cat

emergency
enable

exit
force-reload

isolate
is-system-running
kexec

kill

poweroff
preset
reboot
reenable

KODEKLOUD

TAB
show

show-environment
start
status

condreload get-default link reload stop
condrestart halt list-dependencies reload-or-restart suspend
condstop help list-jobs rescue switch-root

$ systemctl list-dependencies

Another thing that’ll save a lot of time is autocompletion. Type

systemc

press TAB

you get:

systemctl
Although this is not technically system documentation, it can still be helpful.

Many commands have suggestions on what you can type next. For example,
try this. Type

systemctl

Access the labs: https:
https://kode.wiki/linux-labs

25

Kodekloud.com

add a space after the command (don't press ENTER) and now press TAB
twice.

You get a huge list of suggestions. This can help you figure out what your
options for that command are. Although you should not always rely on it. It's
not necessary that absolutely all options are included in this suggestion list.

now add to that:

systemctl list-dep

press TAB

endencies will get added at the end and you get: systemctl list-
dependencies. This is TAB autocompletion and many commands support it.
When you press TAB once, if your command interpreter can figure out what
you want to do, it will automatically fill in the letters. If there are many
autocomplete options and it can't figure out which one you want, press TAB
again and it will show the list of suggestions we observed earlier. These will be
huge timesavers in the long-run, and they might even help you in the exam, to
shave off a few seconds here and there, which might add up and let you
explore an extra question or two.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

TAB: Suggest and Autocomplete

$ 1s /usr/

bin/ libexec/ sbin/
1lib/ local/ share/

TAB suggestions and autocompletions also work for filenames or directory
names. Try

Is /u TAB

Is /usr/ TAB TAB

Now we can see directories available in /usr/ without even needing to explore
this directory with "Is" beforehand. And if we have a long filename like
"wordpress_archive.tgz" we might be able to just type "wor", press TAB and
that long name will be autocompleted.

Recommendation

While manuals and --help pages are super useful, the first few times you use
them, it might be hard to figure out how to do something, with that info alone.
We recommend you take a command you know nothing about and try to figure
out with just man and --help, how to do something. This practice will help you

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

develop the ability to quickly look for help when you're taking the LFCS exam.
There will be questions about theory you either don't know about, or you just
forgot. If you know how to quickly figure out the answer with a man page or --
help, you'll be able to pass the exam much more easily.

Access the labs: https:
https://kode.wiki/linux-labs

26

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

27

Kodekloud.com

KODEKLOUD

Working With Files

and Directories

Now we’ll look at how to create, delete, copy, and move files and directories in Linux.

Before we dive into this lesson, we need to
understand a few basic things:

1.What is a filesystem tree?
2.What is an absolute path?
3.What is a relative path?

Access the labs: https:
https://kode.wiki/linux-labs

28

Kodekloud.com

KODEKLOUD

Listing Files and Directories

To list files and directories in your current (working)

directory, We use the Is command in Linux.
Using Is in your home directory might look like this:

s comes from list.

On Linux, files and directories can have a name that
begins with a . Example: the ".ssh" directory.
These won't be displayed by a simple Is
command. They are, in a way, hidden.

Access the labs: https:
https://kode.wiki/linux-labs

29

Kodekloud.com

To list all files and directories, even the ones

beginning with a ., USe Is —a (the -a flag comes
from the word all.)

Access the labs: https:
https://kode.wiki/linux-labs

29

Kodekloud.com

KODEKLOUD

Listing Files and Directories

$ 1s -1 /var/log/

mp
@ Oct 18 22:38 btmp-20211101

6 Jun 24 09:21 chrony
9794 Nov 1 18:01 cron
10682 Oct 26 14:01 cron-20211026
135 Oct 26 14:13 cups
35681 Nov 1 18:13 dnf.rpm.log
4650 Nov 1 17:56 firewalld
6 Oct 19 00:07 gdm
6 Aug 31 12:07 glusterfs

Of course, to list files and directories from a different
location, we just type the directory path at the end of

s, like Is /var/log/ or Is -l Ivar/logl/ to list files and
directories in a different format, called a "long

listing format," which shows us more details for

each entry, like the permissions for a file or
directory, what user/group owns each entry, when
it was last modified.

Access the labs: https:
https://kode.wiki/linux-labs

30

Kodekloud.com

KODEKLOUD

Listing Files and Directories

$ 1s -a -1 ™ ¢ 1s -al

4096 Nov 1 17:57 .
70 Oct 26 16:54 ..
on 5085 Nov 1 17:56 .bas| istor
n 18 Jul 27 09:21 .bash_logou

We can combine the -a and -| command line
options like this:

Is -a =l or like this as Is —al.

This will display entries in long listing format and
also show us "pseudo-hidden" files and directories
which have a name beginning with a . It doesn’t
matter which order you put the flags, and you don’t

have to put a — in front of each of them. However,

Access the labs: https:
https://kode.wiki/linux-labs

31

Kodekloud.com

the last form is preferred as it's faster to write it.

Access the labs: https:
https://kode.wiki/linux-labs

31

Kodekloud.com

$ 1s -alh

total 76K

drwxr-xr-x. 7 root root
SAWSEEEEEE . 1 aaron aarol
-rw-r--r--. 1 aaron aaroi
-rw-r--r--. 1 aaron aaroi
-rW-r--r--. 1 aaron aaroi
drwxr-xr-x. 2 aaron aaro
drwxr-xr-x. 3 aaron aaro
drwxr-xr-x. 2 aaron aaro
drwxr-xr-x. 2 aaron aaro

KODEKLOUD

Listing Files and Directories

Nov 1 17:56 .bash_history
Jul 27 09:21 .bash_logout
Jul 27 09:21 .bash_profile
Jul 27 09:21 .bashrc

Oct 19 00:11 Desktop

Oct 23 18:15 Documents
Oct 19 00:11 Downloads

Oct 19 00:11 Music

drwxr-xr-x. 2 aaron aaroni 28!0ct 26 13:37 Pictures
-rw-rw-r--. 1 aaron aar‘on§ 36 Oct 28 20:06 testfile

-h human readable format

There's also a command line option, -h, that shows
sizes in "human readable format": bytes,
kilobytes, megabytes, and so on. This must be
combined with the -l option. If we want to use three

options, we could use Is —alh.

Access the labs: https:
https://kode.wiki/linux-labs

32

Kodekloud.com

KODEKLOUD

Filesystem Tree

Documents

Invoice.pdf

Linux organizes files and directories in what it calls
the filesystem tree. Why is it called the filesystem
tree? Because just like a tree we'd see in nature,
this also has a root, branches and leaves. Except,
Linux's filesystem tree is inverted. The root is at
the top and its branches and leaves "grow"
downward.

Access the labs: https:
https://kode.wiki/linux-labs

33

Kodekloud.com

KODEKLOUD

Filesystem Tree

directory path Documents

file path Invoice.pdf

The root directory is /. This is the top-level
directory, there can be no other directories above
it. Under / there are a few subdirectories like
home, var, etc, and so on. These subdirectories
may also contain other subdirectories themselves.
To access a file or directory on our command line,
we must specify its file path or directory path. This
path can be written in two different ways:

Access the labs: https:
https://kode.wiki/linux-labs

34

Kodekloud.com

KODEKLOUD

Absolute Path

The easiest to understand is the absolute path.

/home/aaron/Documents/Invoice.pdfis an
example of such a path.

Absolute paths always start out with the root
directory, represented by /. Then we specify the
subdirectories we want to descend into, in this
case, first home, then aaron, then Documents. We
can see the subdirectory names are separated by a
/. And we finally get to the file we want to access,
Invoice.pdf.

Access the labs: https:
https://kode.wiki/linux-labs 35

Kodekloud.com

An absolute path can end with the name of a file,
but also with the name of a directory. If we'd want to
refer to the Documents directory, we'd specify a
path like /nhome/aaron/Documents

Access the labs: https:
https://kode.wiki/linux-labs

35

Kodekloud.com

KODEKLOUD

Current / Working Directory

print working directory

Documents

Invoice.pdf

To understand a relative path, we first must explore
what the current directory means. This is also
called the working directory.

To see our current (working) directory we can type

pwd

pwd = Print Working Directory

Access the labs: https:
https://kode.wiki/linux-labs

36

Kodekloud.com

When we're working at the command line, we're
always "inside" a directory. For example, if we log in
as the user "aaron" on some server, our starting
current directory might be /home/aaron. Every user
starts in its home directory when they log in. jane
might have it at /home/jane, and root (the super
user/administrator) has it at /root.

Access the labs: https:
https://kode.wiki/linux-labs

36

Kodekloud.com

KODEKLOUD

Current / Working Directory

$ cd /var/log change directory

$ cd /home/aaron

$cd = parent directory

Documents

Invoice.pdf

To change our current directory, we use the cd
command (change directory).

cd /var/log

would change our current directory to /var/log. We
used an absolute path here. But we can also
change directory this way:

cd ..

Access the labs: https:
https://kode.wiki/linux-labs

37

Kodekloud.com

This will take us one directory UP.

If we were cd into /home/aaron, running “cd ..”
would take us into /home, which becomes the new
current directory.

‘. always refers to the parent directory of our

current directory. This was an example of using a
very simple relative path. Let's dive deeper.

Access the labs: https:
https://kode.wiki/linux-labs

37

Kodekloud.com

Let's imagine our current
directory is /home/aaron. With
relative paths we can refer to
other places in one of three main

ways

| ocations "under" our current

Access the labs: https:
https://kode.wiki/linux-labs

38

Kodekloud.com

directory. E.g.,
Documents/Invoice.pdf Since
we're in /home/aaron, typing a
path like
Documents/invoice.pdf is like
typing
/home/aaron/Documents/invoic
e.pdf. Our relative path "gets
added" to our current directory
and we get to our PDF file.

eLocations in our current
directory. Typing Invoice.pdf will
access the file at
/home/aaron/Invoice.pdf

|_ocations above our current
directory. Typing ../Invoice.pdf

Access the labs: https:
https://kode.wiki/linux-labs 38

Kodekloud.com

points to the file at
/home/lnvoice.pdf. Since we
used ../ we basically said, "go
one directory up".

WWe can use .. multiple times.
..I..IInvoice.pdf points to the file
at /Invoice.pdf. The first ..
"moved" the relative path at
/home, the next .. moved it at /.

Access the labs: https:
https://kode.wiki/linux-labs

38

Kodekloud.com

Extra tips:

If you're in /var/log currently and
you move to /, you could run the

command cd / and it will take you
to the root directory.

Access the labs: https:

https://kode.wiki/linux-labs 39

Kodekloud.com

You can return to your previous
working directory with the cd -

command. It will take you back to
Ivarl/log.

If you're in /var/log and you want
to return to your home directory
— in our case, /home/aaron —
use cd.

cd without any options or
paths after it will always take
you back to the home
directory.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs

39

Kodekloud.com

KODEKLOUD

Creating Files

$ touch Receipt.pdf

$ touch /home/jane/Receipt.pdf !
v

$ touch ../jane/Receipt.pdf home

U v
aaron

Receipt.pdf Receipt.pdf

Let's assume we’re in our home directory, and we

want to create a new file. To do this, we can use

touch. For example, to create a file named
“Receipt.pdf,” we would type touch Receipt.pdf.

This will create it inside the current directory. To
create it at another location, we could use touch
/home/jane/Receipt.pdf

Since we're in lhome/aaron, we could also use the

Access the labs: https:
https://kode.wiki/linux-labs

40

Kodekloud.com

relative path to create file in /home/jane by typing
touch ../jane/Receipt.pdf.

Both commands would work the

same because all the commands we'll
discuss accept both absolute, and relative paths,
so we won't mention these alternatives for each

one. Just know that after the command, you can use
any kind of path you want.

Access the labs: https:

https://kode.wiki/linux-labs 40

Kodekloud.com

KODEKLOUD

Creating Directories

$ mkdir Receipts make directory

Receipts

Receipt.pdf Receipt.pdf

To create a new directory, use mkdir; for example:
mkdir Receipts

mkdir comes from make directory

Access the labs: https:
https://kode.wiki/linux-labs

41

Kodekloud.com

cp [source] [destination]

$ cp Receipt.pdf Receipts/
$ cp Receipt.pdf Receipts

$ cp Receipt.pdf Receipts/ ReceiptCopy.pdf

v v
Receipt.pdf ReceiptCopy.pdf

To copy a file, we use the cp
command, which is short for
copy. cp is followed by the path
to the file we want to copy
(source), then the path to the
destination where we want to
copy it. "cp source destination”

Access the labs: https:
https://kode.wiki/linux-labs 42

Kodekloud.com

To copy Receipt.pdf to the

Receipts directory, we'd use cp
Receipt.pdf Receipts/

Notice how we terminated the
path to the Receipts directory
with a /, to make it Receipts/?
Without the / would have worked
too. But it's good practice to
end your directories with a /.
This way, you'll form a healthy
habit and get a visual indicator
that tells you when Receipts
(without /) might be a file, and
Receipts/ might be a directory.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

To copy Receipt.pdf to the
Receipts directory, but also
choose a new name for it, we
could use cp Receipt.pdf
Receipts/ReceiptCopy.pdf.

Access the labs: https:
https://kode.wiki/linux-labs

42

Kodekloud.com

To copy a directory and all its
contents to another directory run
the cp command as before but
with the —r option.

The -ris a command line option
(also called command line flag)

Access the labs: https:
https://kode.wiki/linux-labs

43

Kodekloud.com

that tells cp to copy recursively.
That means, the directory itself,
but also descend into the
directory and copy everything
else it contains, files, other
subdirectories it may have, and
SO on.

For example, say |
have a lot of
directories,
subdirectories and

Access the labs: https:
https://kode.wiki/linux-labs 43

ooooooooooooo

files under the
receipts directory.
And I'd like to back
up all the contents
into a backup
directory named
BackupOfReceipts.

Run the command — cp

Access the labs: https:

Kodekloud.com

—r Receipts/
BackupOfReceipts/

This copies all
subdirectories and files
from the receipts folder
into the
backpupofreceipts folder.

Access the labs: https:
https://kode.wiki/linux-labs 43

Kodekloud.com

BackupOfReceipts

Receipts

The name you choose for your
cloned directory must not exist
at your destination. For
example, if we'd already have a
directory at
/home/aaron/BackupOfReceipt
s, this will just move Receipts
there and it would end up at

Access the labs: https:
https://kode.wiki/linux-labs

44

Kodekloud.com

Documents/BackupOfReceipts
/IReceipts/.

Access the labs: https:
https://kode.wiki/linux-labs

44

Kodekloud.com

So, we saw that the copy
operation copies a file from one
place to another, resulting in 2
copies of files — the original one
and the new one in the new
location.

But what if we want to move a file

Access the labs: https:
https://kode.wiki/linux-labs 45

Kodekloud.com

from one location to another? So
that the file is not present in the
original location but is only
present in the new location?

Access the labs: https:
https://kode.wiki/linux-labs

45

Kodekloud.com

mv Receipt.pdf Receipts/

mv Receipt.pdf OldReceipt.pdf

mv Receipts/ OldReceipts/

OldReceipt.pdf

For this use the mv command.
Myv stands for move.

Run the command mv
Receipt.pdf Receipts/ to move
the file from Receipt.pdf to the
Receipts folder. The file is moved
and there is only 1 copy of file

Access the labs: https:
https://kode.wiki/linux-labs

46

Kodekloud.com

available.

To rename a file, we

can use. mv

Receipt.pdf
OldReceipt.pdf

To rename a directory,
we can use the new
name as the

destination, such as:
mv Receipts/

Access the labs: https:
https://kode.wiki/linux-labs 46

ooooooooooooo

OldReceipts/.

Notice that we did not
have to use the -r flag
with mv to recursively
work with directories?
Mv takes care of that
for us.

Access the labs: https:

Kodekloud.com

KODEKLOUD

Deleting Files and Directories

rm remove

$ rm Invoice.pdf

$ rm -r Invoices/

Invoices

Invoice.pdf

To delete a file, we use the rm command. rm comes
from remove. 10 delete the file

Invoice.pdf, we can use rm Invoice.pdf

To delete a directory like the Invoices directory, we

would use : rm -r Invoices/

Once again, the -r option was used to do this
recursively, deleting the directory, along with its
subdirectories and files. When you copy or delete

Access the labs: https:
https://kode.wiki/linux-labs

47

Kodekloud.com

directories, remember to always add the -r option.

Access the labs: https:
https://kode.wiki/linux-labs

47

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

48

Kodekloud.com

Create and Manage Hard Links

In this lecture, we’ll look at how Linux manages hard links.

Access the labs: https:
https://kode.wiki/linux-labs

KODEKLOUD

49

Kodekloud.com

KODEKLOUD

Inodes

$ echo “Picture of Milo the dog” > Pictures/family_dog.jpg

family_dog.jpg

$ stat Pictures/family dog.jpg

File: Pictures/fami
i - I0 Block: 4096 regular file
A Links: 1
) Gid: (1605/ family)

Modify: 2021-10-27 14:41:19.207278881 -0500
Change: 2021-10-27 16:33:18.851749919 -0500
Birth: 2021-10-26 13:37:17.980969655 -0500

To understand hard links and soft links we first must
learn some very basic things about filesystems.

Let's imagine a Linux computer is shared by two
users: aaron and jane. Aaron logs in with his own
username and password, Jane logs in with her own
username and password. This lets them use the
same computer, but have different desktops,
different program settings, and so on. Now Aaron
takes a picture of the family dog and saves it into
/home/aaron/Pictures/family dog.jpg.

Let's simulate a file like this.

Access the labs: https:
https://kode.wiki/linux-labs

50

Kodekloud.com

echo "Picture of Milo the dog" >
Pictures/family_dog.jpg

With this, we created a file at
Pictures/family _dog.jpg and stored the text "Picture
of Milo the dog" inside.

There's a command on Linux that lets us see some
interesting things about files and directories.

stat Pictures/family _dog.jpg

We'll notice an Inode number. What is this?

Filesystems like xfs, ext4, and others, keep track of
data with the help of inodes. Our picture might have
blocks of data scattered all over the disk, but the
inode remembers where all the pieces are stored. It
also keeps track of metadata: things like
permissions, when this data was last modified, last
accessed, and so on. But it would be inconvenient
to tell your computer, "Hey, show me inode
52946177". So, we work with files instead, the one
called family_dog.jpg in this case. The file points to
the inode, and the inode points to all the blocks of
data that we require.

And we finally get to what interests us here.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Hard Links

$ echo “Picture of Milo the dog” > Pictures/family_dog.jpg

$ stat Pictures/family dog.jpg

File: Pictures/family_dog.jpg
Blocks:

ize: 49
: fdeeh/64768d Inode: 52946177 |Li
) Uid: (1000/

: unconfined_u:object_r:user_home_t:s@

: 2021-10-27 16:33:18.949749912 -0500
Modify: 2021-10-27 14:41:19.207278881 -0500
Change: 2021-10-27 16:33:18.851749919 -0500
Birth: 2021-10-26 13:37:17.980969655 -0500

We notice this in the output of our stat command.

There's already one link to our Inode? Yes, there is.
When we create a file, something like this happens:

We tell Linux, "Hey save this data under this
filename: family_dog.jpg"

Linux says: "Ok, we'll group all this file's data under
inode 52946177. Data blocks and inode created.
We'll hardlink file "family_dog.jpg" to Inode
52946177.

Now when we want to read the file:

Access the labs: https:
https://kode.wiki/linux-labs

51

Kodekloud.com

"Hey Linux, give me data for family_dog.jpg file"

And linux goes: "Ok, let me see what inode this links
to. Here's all data you requested for inode
52946177"

family _dog.jpg -> Inode 52946177

So the number shown as Links in the output of the stat command is the number of
hard links to this inode from files or filenames.

Easy to understand. But why would we need more
than one hard link for this data?

Access the labs: https:
https://kode.wiki/linux-labs

51

Kodekloud.com

KODEKLOUD

Hard Links

$ cp -r /home/aaron/Pictures/ /home/jane/Pictures/
1n path_to_target_file path_to_link_file
$ 1n /home/aaron/Pictures/family_dog.jpg /home/jane/Pictures/family_dog.jpg

$ stat Pictures/family dog.jpg

family_dog.jpg family_dog.jpg

File: Pictures/family_dog.jpg
Size: 49 Blocks:
\% 0h/64768d Inode: 52946177

) Uid: (1000/
8 ned_u:object_r:user_home_t:s@
: 2021-10-27 16:33:18.949749912 -0500

Modify: 2021-10-27 14:41:19.207278881 -0500

Change: 2021-10-27 16:33:18.851749919 -0500

Birth: 2021-10-26 13:37:17.980969655 -0500

$ rm /home/aaron/Pictures/family_dog.jpg

$ rm /home/jane/Pictures/family_dog.jpg

Well, Jane has her own folder of pictures, at
/home/jane/Pictures. How could Aaron share this
picture with Jane? The easy answer, just copy
/home/aaron/Pictures/family dog.jpg to
/home/jane/Pictures/family _dog.jpg. No problem,
right? But now imagine we must do this for 5000
pictures. We would have to store 20GB of data
twice. Why use 40GB of data when we could use
just 20GB? So how can we do that?

Instead of copying
/home/aaron/Pictures/family dog.jpg to

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

/home/jane/Pictures/family _dog.jpg, we could
hardlink it to /home/jane/Pictures/family _dog.jpg.

The syntax of the command is:
In path_to target_file path_to_link file

The target_file is the file you want to link with. The
link_file is simply the name of this new hard link we
create. Technically, the hard link created at the
destination is a file like any other. The only special
thing about it is that instead of pointing to a new
inode, it points to the same inode as the target_file.

In our imaginary scenario, we would use a
command like:

In /home/aaron/Pictures/family _dog.jpg
/home/jane/Pictures/family_dog.jpg

Now our picture is only stored once, but the same
data can be accessed at different locations, through
different filenames.

If we run the stat command now we
see the Links are now 2. This is

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

because this Inode now has 2 hard
links pointing to it.

Another beautiful thing about hard links is this:
Aaron and Jane share the same 5000 pictures
through hardlinks. But maybe Aaron decides to
delete his hardlink of
/home/aaron/Pictures/family _dog.jpg. What will
happen with Jane's picture? Nothing, she'll still have
access to that data. Why? Because the inode still
has 1 hard link to it (it had 2, now it has 1). But if
Jane also decides to delete her hard link
/home/jane/Pictures/family _dog.jpg, the inode will
have 0 links to it. When there are 0 links, the data
itself will be erased from the disk.

The beauty of this approach is that people that
share hard links can freely delete what they want,
without having a negative impact on other users that
still need that data. But once everyone deletes their
hard links to that data, the data itself will be erased.
So, data is "intelligently removed" only when
EVERYONE involved decides they don't need it
anymore.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Limitations and Considerations

Only hardlink to files, not folders
$ useradd -a -G family aaron

$ useradd -a -G family jane

$ chmod 660 /home/aaron/Pictures/family_dog.jpg

Only hardlink to files on the same filesystem

/home/aaron/file /mnt/Backups/file

Limitations of hard links:

*You can only hardlink to files, not directories.

*You can only hardlink to files on the same filesystem. If you had an external
drive mounted at /mnt/Backups, you would not be able to hardlink a file from
your SSD, at /home/aaron/file to some other file on /mnt/Backups since that's
a different filesystem.

Things to take into consideration when you hardlink:

First, make sure that you have the proper permissions to create the link file at
the destination. In our case, we need write permissions at:
/home/jane/Pictures/.

Second, when you hardlink a file, make sure that all users involved have the
required permissions to access that file. For Aaron and Jane, this might mean
that we might have to add both their usernames to the same group, for
example, "family". Then we'd use a command to let the group called "family"
read and write to this file. You only need to change permissions on one of the
hardlinks. That's because you are actually changing permissions stored by the

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Inode. So, once you change permissions at
/home/aaron/Pictures/family _dog.jpg, /home/jane/Pictures/family _dog.jpg and
all other hard links will show the same new sets of permissions.

Access the labs: https:
https://kode.wiki/linux-labs

53

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

54

Kodekloud.com

Create and Manage Soft Links

Let's look now at how Linux manages soft links.

Access the labs: https:
https://kode.wiki/linux-labs

KODEKLOUD

55

Kodekloud.com

C:\Program Files\MyCoolApp\application.exe

Know how when you install a program on Windows,
you might get a shortcut on your desktop? You
double click on that shortcut and that application
gets launched. The application is obviously not
installed on your desktop. It may have its files stored
in C:\Program Files\MyCoolApp directory. And when
you double click the shortcut, this only points to an
executable file at C:\Program
Files\MyCoolApp\application.exe. So, the double
click on that shortcut basically redirects you to the
file C:\Program Files\MyCoolApp\application.exe,
which gets executed.

Access the labs: https:
https://kode.wiki/linux-labs 56

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs

56

Kodekloud.com

KODEKLOUD

Soft Links

1n -s path_to_target_file path_to_link_file e
family_dog_shortcut.jpg
$ 1n -s /home/aaron/Pictures/family_dog.jpg family_dog_shortcut.jpg

T S

$1s -1
aron aaron family_dog_shortcut.jpg -> /home/aaron/Pictures..
mily_dog_shortcut.jpg

family_dog.j
/home/aaron/Pictures/family_dog.Jjpg y-dog.jpg

Hard Link
$ echo “Test” >> fstab_shortcut
bash: fstab_shortcut: Permission denied
$1s -1
lrwxrwxrwx. 1 aaron aaron

[/home/aaron]$ 1n -s Pictures/family_dog.jpg relative_picture_shortcut

Soft links in Linux are very similar. A hard link
pointed to an inode. But a soft link is nothing more
than a file that points to a path instead. It's almost
like a text file, with a path to a file or directory inside.

The syntax of the command to create a soft link
(also called symbolic link) is the same as before, but
we add the -s or --symbolic option:

In -s path_to_target path_to link_file

path_to_target = our soft link will point to this path
(location of a file or directory)

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

path_to link_file = our soft link file will be created
here

For example, to create a symbolic link that points to
the Pictures/family dog.jpg file, we can run the
command:

In -s Pictures/family _dog.jpg
family _dog_shortcut.jpg

Now if we list files and directories in long listing
format with the Is —-I command, we'll see an output
like this:

The | at the beginning shows us that this is a soft
link. And Is -l even displays the path that the soft link
points to.

If this path is long, Is -I might not show the entire
path. An alternative command to see the path stored
in a soft link is:

readlink path_to_soft_link
So, in our case, it would be:
readlink family dog shortcut.jpg

You may also notice that all permission bits, rwx
(read, write, execute) seem to be enabled for this

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

file. That's because the permissions of the soft link
do not matter. If you'd try to write to "fstab_shortcut”,
this would be denied because the permissions of
the destination file apply and /etc/fstab does not
allow regular users to write here.

In our first command we used an absolute path -
/home/aaron/Pictures/family dog.jpg.

if we ever change the directory name "aaron" in the
future, to something else, this soft link will break.
You can see a broken link highlighted in red in the
output of the Is —| command.

To tackle this you could create a soft link with a
relative path. Say for example you were in the home
directory of aaron, you could create a soft link using
the relative path of the family_dog file instead of
specifying the complete path.

When someone tries to read
relative_picture_shortcut, they get redirected to
Pictures/family _dog.jpg, relative to the directory
where the soft link is.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Soft Links

Softlink to files and folders

Softlink to files on different filesystem as well

/home/aaron/file /mnt/Backups/file

Since soft links are nothing more than paths pointing to a file, you can also
softlink to directories:

In -s Pictures/ shortcut_to_directory

Or you can softlink to files/directories on a different filesystem.

Access the labs: https:
https://kode.wiki/linux-labs

58

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

59

Kodekloud.com

KODEKLOUD

List, Set, and

Change File Permissions

We'll now discuss how to list, set, and change standard file permissions in Linux.

Access the labs: https:
https://kode.wiki/linux-labs

60

Kodekloud.com

KODEKLOUD

Owners and Groups

mily 49 Oct 27 14:41 family_dog.jpg

chgrp group_name file/directory change group

$ chgrp wheel family dog.jpg

mily§ 49 Oct 27 14:41 family_dog.jpg

To understand how file and directory permissions
work on Linux we must first look at file/directory
owners.

If we type
s -
we'll see something like this:

Any file or directory is owned by a user. In this
case, we see that the file "family_dog.jpg" is owned
by the user called aaron. Only the owner of a file or
directory can change permissions, in this case,

Access the labs: https:
https://kode.wiki/linux-labs

61

Kodekloud.com

aaron. The only exception is the root user (super
user/administrator account), which can change
permissions of any file or directory.

In the second field we can see that this file also has
a group associated with it, the family group. We'll
see later what the role of the group is.

To change the group of a file/directory, we use the
chgrp command (change group).

Syntax:
chgrp group _name file/directory

For example, to change this file's group to "wheel"
we'd use:

chgrp wheel family _dog.jpg

If we do another Is —I, we can see that the group has
now changed to wheel.

We can only change to groups that our user is part
of.

We can see to what groups our current user
belongs with:

groups

Access the labs: https:
https://kode.wiki/linux-labs 61

Kodekloud.com

This means we can change the group of our file to:
aaron, wheel or family.

Again, the root user is the exception, which can
change the group of a file or directory to whatever
group exists on the system.

There's also a command to change the user owner
of a file or directory: chown (change owner).

The syntax is:
chown user file/directory

For example, to change ownership of this file to
jane, we'd use:

chown jane family dog.jpg

But only the root user can change the user owner,
so we'd have to use the sudo command to
temporarily get root privileges:

sudo chown jane family _dog.jpg

With another Is —I, we can see the user has now
changed to jane.

We can change both user owner and group with a
different syntax of chown:

Access the labs: https:
https://kode.wiki/linux-labs 61

Kodekloud.com

chown user:group file/directory

And since only root can change user ownership,
let's set user to aaron and group to family to revert
all our changes:

sudo chown aaron:family family _dog.jpg

One last Is —| will show us that the owner is aaron
again, and the group is family.

Access the labs: https:
https://kode.wiki/linux-labs

61

Kodekloud.com

KODEKLOUD

File and Directory Permissions

$ 1s -1

Frwxrwxrwx. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

File Type Identifier
DIRECTORY d
REGULAR FILE
CHARACTER DEVICE
LINK
SOCKET FILE
PIPE

BLOCK DEVICE

Our
Is -l

command also shows us the permissions of all files
and directories in our current directory

first character on that line shows us what type of
entry this is: a file, a special file, a directory and so
on. For example, we'd see "d" for a directory, "I" for
a soft link, or "-" for a regular file. Here’s a table that
shows the different identifiers and what they stand

for.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We will learn about some of these file types later in this course.

Access the labs: https:
https://kode.wiki/linux-labs

62

Kodekloud.com

KODEKLOUD

File and Directory Permissions

owner Group Others

u g o

Purpose
Read File
Write to File
Execute (run)

No permission

The next 9 characters show us permissions:

First 3: permissions for the user that owns this file.
*Next 3: permissions for the group of this file.

Last 3: permissions for other users (any user that
is not aaron or not part of the family group).

Let's see what r, w and x mean in two different
contexts, because they act in a certain way for files
and have slightly different behavior for directories.
For a file:

*r means the user, group, or other users can read the contents of this file. -
means they cannot read it.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

*w means the user, group, or other users can write to this file, modify its
contents.

X means the user, group, or other users can execute this file. Some files can
be programs or shell scripts (instructions we can execute). To be able to run
this program or shell script, we must have the x permission. A - permission
here means the program or shell script cannot be executed.

Access the labs: https:
https://kode.wiki/linux-labs

63

Kodekloud.com

KODEKLOUD

Directory Permissions

$ 1s Pictures/

$ mkdir Pictures/Family

$ cd Pictures/

Bit Purpose
Read Directory
w Write to Directory
Execute into

No permission

For directories, we must think differently. Unlike a
file that may contain text to be read, executed,
modified, directories do not have such contents.
Their contents are the files and subdirectories they
hold. So read, write and execute refers to these files
and subdirectories they have inside.

*r means the user, group, or other users can read
the contents of this directory. We need anr
permission to be able to run a command like "Is
Pictures/" and view what files and subdirectories we
have in this directory.

*Ww means the user, group, or other users can write

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

to this directory. We need w to be able to create or
delete entries in that directory (add/delete files or
subdirectories), as when we use mkdir.

*X means we can "execute" into this directory. We
need x to be able to do "cd Pictures/" and "enter"
into the Pictures/ directory.

When directories are meant to be accessible, you'll
normally find both the r and the x permissions
enabled.

Access the labs: https:
https://kode.wiki/linux-labs

64

Kodekloud.com

KODEKLOUD

Evaluating Permissions

owner Group Others
] g 0

—)

at family_dog.jpg
icture of Milo the dog

Whenever you're on a Linux system, you're logged
in as a particular user.

We've changed permissions in an interesting way to
make this easier to understand.

<C> Look at the permissions for the family _dog.jpg

file. It's set to <c> read only for owner, read write for
group and no permissions for others.

<c> We see the current owner of the file is aaron.

Access the labs: https:
https://kode.wiki/linux-labs

65

Kodekloud.com

And we know aaron is part of the family group.

Can aaron write to this file considering the fact that
the owner has read-only permissions only? It might
seem that he should be able to do that, as he is part
of the family group, and that group has rw-
(read/write) permissions.

<c> But if we try to add a line of text to this file, it
fails.

Why is that? Because permissions are evaluated in
a linear fashion, <c> from left to right.

With these permissions in mind:

let's see how the operating system decides if you're
allowed to do something.

It goes through a logic like this:

1.Who is trying to access this file? <c>aaron
2.\Who owns this file? <c> aaron

3.0k, current user, aaron, is the owner. <c> Owner
permissions apply: r--. aaron can read the file but
cannot write to it. <c> Write permission denied!

It does not evaluate the permissions of the group
because it already matched you to the first set of
permissions: the ones for the owner of the file.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

<c If you'd be logged in as a different user, for
example jane, the logic would be like this:

1.Who is trying to access this file? <c> jane

2.Who owns this file? aaron

3.0k, owner permissions do not apply, <c> moving
on to group permissions

Is jane in the family group? Yes. Ok, <c> group
permissions apply: jane has rw- permissions so she
can read and write to file.

If the user trying to access the file is not the owner
and is also not in the "family" group, the last three
permissions would apply, the permissions for other
users.

Now that we have a basic understanding of
permissions, let's move on to how we can change
them to suit our needs.

Access the labs: https:
https://kode.wiki/linux-labs 65

Kodekloud.com

KODEKLOUD

Adding Permissions

chmod permissions file/directory

$ 1s -1
-r--rw---

u+[list of permissions]

-. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ chmod u+w family dog.jpg

$ 1s -1 Examples
“PW-rW---

w----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg
u+w / u+rw / u+rwx

g+w / g+rw / g+rwx

0+w / o+rw / o+rwx

To change permissions, we use the chmod
command. The basic syntax of the chmod command
iS:

chmod permissions file/directory

We can specify these permissions in many ways.
Let's start out with simple examples.

We saw that our owner, aaron, cannot write to this
file. Let's fix that. To specify what permissions we
want to add, on top of the existing ones, we use
this syntax:

Access the labs: https:
https://kode.wiki/linux-labs

66

Kodekloud.com

*To add permissions for the user (owner): u+[list of
permissions]. Examples: u+w or u+rw or u+rwx.
*To add permissions for the group: g+[list of
permissions].

*To add permissions for other users: o+[list of
permissions].

In our case, we want to add the write permission for
our user owner of the file:

chmod u+w family dog.jpg

Now the old r-- becomes rw- with the newly added
"w" permission. So we fixed our problem and aaron
can write to this file.

Access the labs: https:
https://kode.wiki/linux-labs 66

Kodekloud.com

KODEKLOUD

Removing Permissions

$ 1s -1
-r--rw-r--. 1 aaron family 49 Oct 27 14:41 family_dog.jpg
u-[list of permissions]

$ chmod o-r family dog.jpg

$ 1s -1 Examples
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg r = U-W / u-rw / u-rwx

g-w / g-rw / g-rwx

0-w / 0-rw / o-rwx

*To remove permissions for the user (owner): u-[list
of permissions]. Examples: u-w or u-rw or u-wx.
*To remove permissions for the group: g-[list of
permissions].

*To remove permissions for other users: o-[list of
permissions].

At this point, we have the permission r-- for other
users. That means anyone on this system can read
our family_dog.jpg file. If we want only the user
owner and group to be able to read it, but hide it
from anyone else, we can remove this r permission.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

chmod o-r family _dog.jpg

Now only aaron or the family group can read this
file, no one else.

Access the labs: https:
https://kode.wiki/linux-labs

67

Kodekloud.com

KODEKLOUD

Setting Exact Permissions

$ 1s -1
-r--rw----. 1 aaron family 49 Oct 27 14:41 family_dog.jpg
u=[1list of permissions]

$ chmod g=r family dog.jpg

. 1 aaron family 49 Oct 27 14:41 family dog.jpg E amples
X

$ chmod g=rw family_ dog.jpg P U=W / U=rW / U=rwx

$ 1s -1 rou g=w / g=rw/ g=rwx

W -. 1 aaron family 49 Oct 27 14:41 family_dog.jpg 0=W / 0=rw / 0=rwx

$ chmod g= family_dog.jpg

. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

$ chmod g-rwx family dog.jpg

With + and - we saw that we can add permissions
on top of the preexisting ones or remove some of
them from the preexisting ones.

If a file has rwx and we remove x, we end up with
rw-. If another file has r-x and we remove x, we end
up with r--. If we only care about removing the
execute permission and we don't care what the
other permissions are, this is perfect. But,
sometimes, we'll have a different requirement. We'll
want to make sure that permissions are set exactly
to certain values. We can do this with the = sign.

Access the labs: https:
https://kode.wiki/linux-labs

68

Kodekloud.com

Just like before, this is done with the format: u=[list
of permissions] or g=[list] or o=[list].

Example: we want to make sure that the group can
only read this file, but not write to it or execute it. We
can run

chmod g=r family_dog.jpg

We can see that, before, group permissions were
rw-. We didn't tell chmod to actually remove the w
permissions, but by saying g=r, we told it to make
the group permissions exactly: r--. This only affects
the group permissions and not the user or other
permissions.

If we'd want to let the group read and write, but not
execute, we'd use:

chmod g=rw family dog.jpg

We can see that whatever letter is missing, will
make chmod disable permissions for that thing. No
X here means no execute permission will be present
on the file.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Which leads us to the next thing. What if we omit all
letters? No r, no w, no x. This would disable all
permissions for the group:

chmod g= family _dog.jpg

This is like saying "make group permissions all

empty". Another command that does the same thing
S

chmod g-rwx family dog.jpg

It does the same thing, but following another logic -

remove all these permissions for the group: r, w, and
X.

Access the labs: https:
https://kode.wiki/linux-labs

68

Kodekloud.com

KODEKLOUD

Chaining Permissions

. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

chmod u+rw,g=r,o= family dog.j .

$ 2B=1) y_dog-Jpe user: at least read and write
group: only read

. 1 aaron family 49 Oct 27 14:41 family_dog.jpg chers: no perm|55|0ns

$ chmod u=rw,g-w family dog.jpg
user: only read and write

group: remove write

$ 1s -1

. 1 aaron family 49 Oct 27 14:41 family_dog.jpg

We saw how to

*add permissions with +
sremove with -

*set exactly to: with =

We can group all these specifications in one single
command by separating our permissions for the
user, group and others, with a "," comma.

For example, let's consider this scenario:
1.We want the user to be able to read and write to

Access the labs: https:
https://kode.wiki/linux-labs

69

Kodekloud.com

the file; don't care if execute permission is on or off.
2. We want the group to only be able to read
(exactly this permission).

3.And we want others to have no permissions at
all.

Our command could be:

chmod u+rw,g=r,0= family _dog.jpg

Or, let's say:

1.We want the user to only be able to read and
write.

2.But we want to remove the write permissions for
the group and leave all other group permissions as
they were.

3.We don't care about permissions that apply to
other users.

We would use:

chmod u=rw,g-w family dog.jpg

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Octal Permissions

$ stat family dog.jpg

File: ily_dog.jpg
Size Blocks: 8 I0 Block: 4096 regular file
ice: fdeeh/64768d Inode: 52946177 Links: 1
) Uid: (1000/

chmod supports another way to set/modify
permissions: through octal values.

First, let's look at another command that shows us
permissions:

stat family_dog.jpg

Here's the list of permissions displayed by stat.

We can see rw-r----- has an octal value of 640

Access the labs: https:
https://kode.wiki/linux-labs

70

Kodekloud.com

(ignore the first 0, that's for special permissions like
setuid, setgid and sticky bit). If we break this down,
640 means the user/owner permissions are 6, the
group permissions are 4 and the other permissions
are 0. How are these calculated?

Access the labs: https:
https://kode.wiki/linux-labs

70

Kodekloud.com

KODEKLOUD

Octal Permissions

Binary Decimal

Let’s take a closer look at this permission. We have rw for user, r for group and none
set for others. Each permission is represented in binary. If it’s set the binary is set to 1
or else its set to 0. In this case the first part has 110, the second part is 100 and the
third part is 0. Converting this binary to decimal would give us 6 for the first part, 4
for the second part, and O for the third part. Here’s a quick binary table for your
reference.

Let’s take another example. This time rwx r-x and r-x. So, the binary format would be
111, 101, 101. The decimal of which is 755.

In the last example it’s read write execute for all, so its 1 for all bits, and so the
decimal value is 777.

Access the labs: https:
https://kode.wiki/linux-labs

71

Kodekloud.com

KODEKLOUD

Octal Permissions

Prw-r--
4+g+@ 4+9+0 0+9+0
4

Permission

r
w

X

if you find binary difficult another approach would be to use the octal table. It’s much
simpler. For each permission assign an octal value. For example 4 for read, 2 for write
and 1 for execute. Then whichever permission is set, consider the respective value for
that and for the permission bit not set consider 0. Once done, add up numbers within
each group.4+2=6and4 + 0+ 0is 4 and the last group is 0.

Let’s look at using the same approach for the other examples as well. rwx r-x and r-x
gives us 755

and rwxrwxrwx gives us 777.

Access the labs: https:
https://kode.wiki/linux-labs

72

Kodekloud.com

KODEKLOUD

Octal Permissions

$ stat family dog.jpg

File: family_dog.jpg
ize: 49 Blocks: 8 I0 Block: 4096 regular file
: fdoeh/64768d Inode: 52946177 8
cess: (0640/-rw-r) uid: (1eee/

$ chmod 640 family dog.jpg

Once we identify the number we want to set to, we
can use the same in chmod commands as well.
Instead of specifying the permissions for each
group, we could just provide a number like this.

chmod 640 family _dog.jpg

Well, that’s all for now, | will see you in the next one.

Access the labs: https:
https://kode.wiki/linux-labs

73

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

74

Kodekloud.com

Search for Files

Let’s now look at how to search for files in Linux.

Access the labs: https:
https://kode.wiki/linux-labs

KODEKLOUD

75

Kodekloud.com

KODEKLOUD

After you get a little bit familiar with a Linux OS you learn that files are very nicely
organized. If you want to configure your SSH daemon, you'll know you'll find relevant
config files in /etc/ssh/. Need to find logged errors? You go to /var/log. Most of the
time, you'll know where everything is, at least, approximately. So why would you
need to search for files? Let's look at some typical scenarios.

Access the labs: https:
https://kode.wiki/linux-labs

76

Kodekloud.com

KODEKLOUD

find /usr/share/ -name ’*.jpg’
1.jpg 2.jpg 3.3pg

find /1ib64/ -size +10M

large-file.txt

find /dev/ -mmin -1
abc.txt

share

1.jpg 2.jpg 3.jpg

4.png 5.png 6.png

Imagine you have a website. You may want to find all your image files. If your
website's directory would be /usr/share/, you could quickly get a list of all .jpg files
with a command like:

In a different scenario, you're almost running out of disk space. This server is hosting
virtual machines. You notice that most of the virtual machines require files under
20GB. You figure that you can search for files that are larger than 20GB to filter out
the abnormally large ones.

We don't have such large files available, but here's how we would look for files larger
than 10 megabytes:

Or let's say you've just updated an application and you're curious to see what files
were changed. You can quickly look at all files that have been modified in the last
minute, with a command like:

Of course, this applies to many other scenarios. Like you could use a similar
command to see what configuration files your system administration team changed in
the last hour.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs

77

Kodekloud.com

KODEKLOUD

find [/path/to/directory] [search_parameters]

$ find /bin/ -name filel.txt

$ find -name filel.txt # No path -> search current directory

$ find /bin/ -name filel.txt find -name filel.txt /bin/

From these examples, it's clear that the command to search for files is find. Let's take
a look at the syntax we'll use throughout this lesson:

For example to find a file named filel.txt in the directory /bin run the command find
/bin —name filel.txt . —name is the search parameter used to specify the name of the
file you are looking for.

You can sometimes skip specifying the path to the directory you want to search
through. And when you do that it searches in the current directory.

The first few times you'll use this command, it may happen quite often that you mix
up the directory path with the search parameters. Meaning, instead of writing find
/bin/ -name filel.txt, you may write find —name filel.txt /bin/. If you find yourself
falling into this trap, just think about it this way, "First | have to go there, then | will
find it". You have to enter your room, and only after you can search for your keys. This
will remind you that you first have to specify the search location and then the search
parameters.

With this basic knowledge out of the way, let's focus on what makes the real magic

Access the labs: https:
https://kode.wiki/linux-labs

78

Kodekloud.com

happen, the search parameters.

Access the labs: https:
https://kode.wiki/linux-labs

78

Kodekloud.com

KODEKLOUD

Search Parameters - Name

[/path/to/directory] [search_parameters]

-name felix
IEII IEII

-iname felix

-name "f*" # Wildcard Expression

Felix James

Let’s look at some other parameters.

We just saw the name parameter being used already. It is used to find files with a
specific name in this case felix.

This however is case sensitive. Meaning it won’t find a file named Felix with a capital
F.

If you'd like the find command to not be case sensitive, or case insensitive add an i
infront of the option to make it iname.

At times you may want to find multiple files that have a pattern in their names. For
example, | want to find all files that start with a lowercase f. For this use a wildcard
expression, which is a starting expression, followed by a star. The * is like a joker card,
for text. It will match anything even if it’s O characters or 100. In this case it matches
all names starting with f.

Access the labs: https:
https://kode.wiki/linux-labs

79

Kodekloud.com

KODEKLOUD

Search Parameters - Modified Time

find -mmin [minute] # modified minute

find -mmin 5 11:50 11:55 12:00 12:05

find -mmin -5
Modification = Create or Edit

find -mmin +5

Modified Time != Change Time
find -mtime 2 # 24-hour periods

Modified Contents Change Metadata

find -cmin -5 # Change Minute

We already saw, in the examples, a command that looks for files modified in the last
minute. It uses the mmin option. To remember "-mmin" think about "modified
minute”. Let’s understand the options in a bit more detail.

Let’s say the current time is 12:05. To find files modified 5 minutes ago — that is files
modified at the minute 12:01 run the find command with the mmin parameter set to
5. This is going to list files modified in that minute only.

To list all files modified in the last 5 minutes set the minute parameter to -5.

So if there is a -5, there’s surely a +5. What do you think that does? | hope you are not
thinking its going to list files modified 5 minutes into the future.

With the parameter set to +5, the command lists all files modified before 5 minutes
and unto infinity. So any file modified more than 5 minutes ago will be listed.

Another similar option is mtime and it helps search for files modified in days or past
24 hour periods. 0 lists past 24 hours, 1 lists files modified between 24 and 48 hours
and so on.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Its worth noting that modification means creation or edition of files.

Linux also has a thing called "change" time for files. Which might sound like the same
thing as a "modify" time, but it's actually different. Modify time refers to time when
contents have been modified. Change time refers to the time when metadata has
been changed. Metadata is "data about data", so in this case, "data about your file".
This might mean something like file permissions. And this is where change time could
be useful. Imagine you suddenly get errors with some app and you suspect it's
because someone changed some file permissions in the wrong way. You could find
files with permissions changed in the last 5 minutes, with a command like:

Access the labs: https:
https://kode.wiki/linux-labs

80

Kodekloud.com

KODEKLOUD

Search Parameters - File Size

Exactly 512 kb
Greater than 512 kb

10 kb 512 kb
Less than 512 kb

bytes
kilobytes
megabytes

gigabytes

In our initial exercises, we used -size to search for files, based on their size.

To find files of size exactly 512 KB run the find command with the size parameter set
to 512k. K stands for kilobytes. Here’s a quick table showing the different values.

C stands for bytes, k for kilobytes, m for megabytes and g for gigabytes. Note that M
and G are capital letters.

To search for files greater than 512 kb use +512 kb and for files less than 512 kb use —
512 kb.

Access the labs: https:
https://kode.wiki/linux-labs

81

Kodekloud.com

KODEKLOUD

Search Expressions

$ find -size
$ find -name "f*" freya il

10 kb 512 kb 1024 kb

$ find -size
$ find -name "f*" -size 512k # AND operator

10 kb 512 kb

$ find -name "f*" -size 512k # OR operator

ben

10 kb 512 kb 1024 kb

The parameters are also at times referred to as search expressions. This is because
you can extend the parameter and add more parts to it to create an expression - like
in Mathematics.

So we learned that we could find files that start with a letter using the wildcard
format like this. So all files starting with the letter f are found.

We also learned we can list files by a size using the size parameter like this. All files of
size 512kb are listed.

However what if | want to find files that start with the filename f and are also of size
512 kb?

For this you can specify multiple options together in a single command like this. Here
| have the name option and the size option. This works like an AND operator. It finds
files that match both of these criteria. In our case the file that starts with the letter f
and is also 512kb is the file named freya.

But what if we want an OR expression? For example I'd like to find files that match

Access the labs: https:
https://kode.wiki/linux-labs 82

Kodekloud.com

either of these criteria. All files that either start with f or are of size 512kb. For this
add the —o flag to the command like this.

Access the labs: https:
https://kode.wiki/linux-labs

82

Kodekloud.com

NOT operator

alternate NOT operator

Another interesting thing you could insert into an
expression is the NOT operator. To make it easy to
understand, let's look at another example. Say you
want to find all files that do not begin with the letter
f. To exclude files beginning with the letter f from our
results, we would use the “-not” flag before the “-
name” flag, followed by “f*.” This would return a list
of file names that do not begin with the letter f.

Another way to write the NOT operator is to use the
“1.” Since One important note, however. Our
command interpreter, bash, when we write "!" it will

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

think we want to do some special things, as that's a
special character for it. To tell it "Hey bash, ignore
this special character and just consider it a regular
thing | typed, don't take any special actions" we
escape it. To escape a character, we just add a
backslash "\" in front of it. Our command becomes:

find \! -name “f*”.

Access the labs: https:
https://kode.wiki/linux-labs

83

Kodekloud.com

KODEKLOUD

Search Expressions

Permissions: 664 = u+rw,g+rw,o+r

$ find -perm 664 # find files with exactly 664 permissions

$ find -perm -664 # find files with at least 664 permissions

$ find -perm /664 # find files with any of these permissions

$ find -perm u=rw,g=rw,o=r # find files with exactly 664 permissions
$ find -perm -u=rw,g=rw,o=r # find files with at least 664 permissions

$ find -perm /u=rw,g=rw,o=r # find files with any of these permissions

We can also search for files based on their
permissions. We’'ll use “664” for our permissions.
“664” means this permission: user can read and
write, group can read and write, others can read
(u+rw,g+rw,o+r).

To search for files based on their permissions, we
can use:

to look for files which have exactly these
permissions

to look for files which have at least

Access the labs: https:
https://kode.wiki/linux-labs

84

Kodekloud.com

these permissions. Which means that even if the file
has some extra permissions set, it will still show up
in the search results. But if it has less than these
permissions, it won't show up. For example, 664
denotes that a user should have read and write
permissions. If they only have read permissions but
no write, then find will not show this in the search
result. Think of it as "bare minimum permissions are
these:"

-perm /664 to look for files which have any of
these permissions. Unlike the "bare minimum"
condition above, this is more inclusive. For example,
if a user can read the file, but cannot write to it, it will
still show up in search results, as one permission
has been matched, u=r, so it does not matter if other
permissions exist or don't exist.

An alternative way to write each of these is:

-perm u=rw,g=rw,o=r
e-perm -u=rw,g=rw,o=r
e-perm /u=rw,g=rw,o=r

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Search Expressions

$ find -perm 600
$ find -perm -100 freya -

$ find -perm -o=r

$ find -perm /u=r,g=r,o=r

Suppose we have a group of files.

We want to find files which only the owner can read
and write, and no other permissions are set, we
would run find —perm 600. This would match the

LN 1

files, “felix,” “james,” and “bob.”

10 find files that the owner can execute at least, but
rest of permissions can be anything, we would run
find —perm -100, which would match only “freya”
and “jacob.”

Now, imagine we want to make sure that nobody

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

else can read these files, except users and groups
that own them. In this case, we use the NOT
operator. To look for files that others can NOT
read, we would run find \! —-perm —o=r, which

matches “felix,” “james,” “bob,” “freya,
“bean.”

L N 1

john,” and

Finally, to fiNd files that can be read by either the user,
or the group, or others -- does not matter who it is
-- but at least one of them should be able to read.
To do this, we would run find —perm /u=r,g=r,o=r.
In this case, all our files match the condition. If no
one can read it, it won't show up in the results.

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs

86

Kodekloud.com

Analyze Text With

Regular Expressions

Let’s look at analyzing text using basic regular expressions in Linux.

Access the labs: https:
https://kode.wiki/linux-labs

KODEKLOUD

87

Kodekloud.com

KODEKLOUD

Regular Expressions

203.102.3.5

x is an integer |
X is greater than 3 (x > 3)
x is less than 8 (x < 8)

In our previous commands, we used simple search
patterns, looking for some specific pieces of text,
like "centos". But what if we need more complex
search conditions?

Imagine we have some application code scattered
in hundreds of files. And we need to extract all IP
addresses used in this app. That would require
more advanced search instructions. An IP has a
form like 203.102.3.5. But we can't just make a
search pattern look for numbers with a . between
them, as this would also match numbers like "5.23",
which are not IP addresses.

Access the labs: https:
https://kode.wiki/linux-labs

88

Kodekloud.com

In math, we can say something like:

X is an integer
*X is bigger than 3, x>3
X is smaller than 8, x<8

And this would mean x is either 4, 5, 6 or 7. Regular
expressions work in a similar way. We specify some
conditions, tie all of them together, and our search
pattern only matches what perfectly fits within those
conditions.

Let's start out with some super simple examples and
then build up to slightly more advanced
expressions.

Access the labs: https:
https://kode.wiki/linux-labs 88

Kodekloud.com

KODEKLOUD

Regex Operators

All regular expressions are built with the help of
operators like:

/A (caret)

*$ (dollar sign)
*. (period)

* (asterisk)

*+ (plus sign)
{ } (braces)
equestion mark

Access the labs: https:
https://kode.wiki/linux-labs

89

Kodekloud.com

evertical pipe
*brackets
eparenthesis
*brackets with caret

Let's see what each of them does.

Access the labs: https:
https://kode.wiki/linux-labs

89

Kodekloud.com

KODEKLOUD

A “The line begins with”

$ less /etc/login.defs $ grep -v '~' /etc/login.defs

MAIL_DIR /var/spool/mail

H*
=
®

ase note that the parameters in thi

ehavior of the tools from the shado . None o ese UMASK 022
ols uses the PAM mechanism, an a

sswd command) should therefore sewhere. HOME_MODE @700
etc/pam.d/system-auth for more information.

~NT 4o T
@ o

PASS_MAX_DAYS
PASS_MIN_DAYS
REQUIRED PASS_MIN_LEN
Directory where mailboxes reside, _or_ name of file, relative to the PASS_WARN_AGE
home directory. If you _do_ define both, MAIL_DIR takes precedence.
QMAIL_DIR is for Qmail UID_MIN
UID_MAX
#QMAIL_DIR Maildir SYS_UID_MIN
MAIL_DIR /var/spool/mail SYS_UID_MAX
#MAIL_FILE ail

#
#
#
#
#
#
#
#
#

#* #

GID_MIN

o . GID_MAX
$ grep '“#' /etc/login.defs SYS_GID_MIN
SYS_GID_MAX

CREATE_HOME

In Linux, configuration files can have lines that begin
with a # sign. These are called "commented lines".
They are inactive. The program looking for settings
in such a file will ignore all lines that begin with a #.
But comments are useful for humans, as they let us
see examples of config settings in that file, and
descriptions for what they do, without interfering
with the program that reads them.

This means that we can search for commented
lines, specifically, by creating a regular expression
that looks for all lines that begin with a "#".

Access the labs: https:
https://kode.wiki/linux-labs 90

Kodekloud.com

The regular expression would be:

Nt

And we can use it in grep like this:

grep "' /etc/login.defs

But this doesn't seem to be terribly useful. However,
combined with grep's option to invert results, it
becomes so.

By inverting we tell grep to show us lines that don't
begin with a # sign.

Access the labs: https:
https://kode.wiki/linux-labs

90

Kodekloud.com

grep -v "' /etc/login.defs

And boom! Now we can see exactly what we
wanted: settings actively used.

Imagine how useful this would be in a very long file
with hundreds of comments that make it hard to
spot what you're looking for!

Access the labs: https:
https://kode.wiki/linux-labs

90

Kodekloud.com

KODEKLOUD

A “The line begins with”

$ grep '"PASS' /etc/login.defs

_MAX_DAYS 99999
_MIN_DAYS 0
_MIN_LEN 5
_WARN_AGE 7

And just to show another example, we could look for
lines that start exactly with these four letters: PASS.

grep '""PASS' /etc/login.defs

Access the labs: https:
https://kode.wiki/linux-labs 91

Kodekloud.com

KODEKLOUD

$ “The line ends with”

$ grep '7' /etc/login.defs

022 is the default value, but 827, or even
HOME_MODE 0700
PASS_WARN_AGE

$ grep '7%' /etc/login.defs

PASS_WARN_AGE

$ grep 'mail$' /etc/login.defs

MAIL_DIR /var/spool/
#MAIL_FILE .

Now let's imagine a different scenario. We need to
change a setting that is currently set to "7" days.
Easy enough, we could look for a 7, right?

grep '7' /etc/login.defs
But this shows us some stuff we don't need.

However, we know that this file uses this syntax:
VARIABLE NAME [space] VARIABLE VALUE. The
variable value is last. Which means that if some
variable is set to have a value of 7, this number will

Access the labs: https:
https://kode.wiki/linux-labs 92

Kodekloud.com

be the last character on the line.

We can tell our regex to look for a line that ends
with "7", with this expression:

7%

In grep, we'd use it like this:

grep '7%' /etc/login.defs

Clean result!

Just like with A, with $ we can look for lines that end
with a sequence of characters. To look for all lines
that end with the text "mail":

Access the labs: https:
https://kode.wiki/linux-labs

92

Kodekloud.com

grep 'mail$’' /etc/login.defs

Please take note how these operators are placed
differently

mail$
APASS

If you mix up their location you won't get any results,
which can lead to confusion why your regex is not
working. To easily remember their locations, think
like this:

*The "line begins with" operator, ?, should be
placed at the beginning of my search pattern.

The "line ends with" operator, $, goes at the end of
my pattern.

Access the labs: https:
https://kode.wiki/linux-labs 92

Kodekloud.com

KODEKLOUD

. “Match any ONE character”

$ grep -r 'c.t' /etc/
/etc/man_db.conf:# manpath. If no path string is used, the path will default to the
/etc/man_db.conf:# the database cache for any manpaths not mentioned below unless explicitly
/etc/man_db.conf:# lo ion of paths and the creation of database caches; it has no effect
/etc/man_db.conf:#DEFINE
/etc/man_db.conf:# directives may be given for clarity, and will be con enated together in
/etc/man_db.conf:# is that you only need to explicitly list extensions if you want to force a
/etc/man_db.conf:# Range of terminal widths permitted when displaying pages. If the
/etc/man_db.conf:# terminal falls outside this range, pages will not be created (if
/etc/man_db.conf:# If CATWIDTH is set to a non-zero number, pages will always be
/etc/man_db.conf:# NOCACHE keeps man from creating pages.
/etc/nanorc:## Use -from-cursor-to-end-of-line by default.
/etc/nanorc:# set fromcur:
/etc/nanorc:## (The old formg is deprecated.)
/etc/nanorc:## double click), e e shortcuts. The mouse will work in the X

$ grep -wr ‘c.t’ /etc/

Anywhere you add a . in your expression, it will
match any character in that spot. For example:

c.t will match cat, cut, cit, cot, and even c1t or c#t.
But it won't match ct. There must be exactly one
random character between ¢ and t. With c..t there
have to be two characters.

Example grep command:

grep -r 'c.t' /etc/

Access the labs: https:
https://kode.wiki/linux-labs

93

Kodekloud.com

We can see that even "execute" is a match because
that sequence fits inside that word

Access the labs: https:
https://kode.wiki/linux-labs

93

Kodekloud.com

“Match any ONE character”

$ grep -wr 'c.t' /etc/

/etc/brltty/Input/mn/all.txt:Left: append to existing buffer from selected character
/etc/brltty/Input/mn/all.txt:Up: start new buffer at selected character
/etc/brltty/Input/mn/all.txt:Down: rectangular to selected character
/etc/brltty/Input/mn/all.txt:Right: linear to selected character

grep: /etc/libvirt: Permission denied

grep: /etc/wpa_supplicant/wpa_supplicant.conf: Permission denied
/etc/mime.types:application/vnd.commonspace csp
/etc/mime.types:# wav: audio/x-wav, : application/mac-compactpro
/etc/mime.types:application/mac-compactpro

grep: /etc/sudo-ldap.conf: Permission denied

grep: /etc/sudo.conf: Permission denied

grep: /etc/sudoers: Permission denied

grep: /etc/sudoers.d: Permission denied

grep: /etc/iscsi/iscsid.conf: Permission denied

grep: /etc/firewalld: Permission denied
/etc/mcelog/triggers/cache-error-trigger: if ["$($F)" !
/etc/smartmontools/smartd_warning.sh: <<EOF

. If we'd only want to match whole words with this
and not parts of words, we can use grep's -w option

grep -w -r 'c.t' /etc/

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

KODEKLOUD

Special Characters

$ grep '.' /etc/login.defs

And this brings us to an interesting problem. This .
has a special meaning in regex. But what if we need
to search for an actual . in our text?

This won't work:

grep "' /etc/login.defs

as this regex will basically match each character,
one by one.

Access the labs: https:
https://kode.wiki/linux-labs 95

Kodekloud.com

KODEKLOUD

\: Escaping For Special Characters

$ grep '\.' /etc/login.defs

behavior of the tools from the shadow-utils component. None of these
passwd command) should therefore be configured elsewhere. Refer to

/etc/pam.d/system-auth for more information

home directory. If you _do_ define both, MAIL_DIR takes precedence
#MAIL_FILE .mail

Default initial "umask" value used by login(1) on non-PAM enabled
systems

Default "umask" value for pam_umask(8) on PAM enabled systems

home directories if HOME_MODE is not set

for increased privacy. There is no One True Answer here: each sysadmin
must make up their mind

home directories

If HOME_MODE is not set, the value of UMASK is used to create the mode
PASS_MAX_DAYS Maximum number of days a password may be
used

PASS_MIN_DAYS Minimum number of days allowed between
password changes

PASS_MIN_LEN Minimum acceptable password length

PASS_WARN_AGE Number of days warning given before a
password expires

The solution, however, is simple. We look for a
regular . by escaping this. Escaping is how we tell
our regular expression "Hey, don't consider this . a
match any one character operator. Instead,

interpret it as a regular ".".

To escape some special character we just add a
backslash \ before it. Instead of

Access the labs: https:
https://kode.wiki/linux-labs

96

Kodekloud.com

we write

So our grep command becomes:

grep '\."' /etc/login.defs

Access the labs: https:
https://kode.wiki/linux-labs

96

Kodekloud.com

KODEKLOUD

*: Match The Previous Element © Or More Times

let* = |ettt
$ grep -r 'let*' /etc/

/etc/pnm2ppa.conf:# configuration fi (/etc/pnm2ppa.conf), and not from
configuration files

/etc/pnm2ppa.conf:#silent 1

/etc/pnm2ppa.conf:# (Older versions of pnm2ppa required larger left and
right margins to avoid

/etc/pnm2ppa.conf:# printer failure with "flashing lights", but this
problem is believed to

/etc/pnm2ppa.conf:#leftmargin 10

/etc/pnm2ppa.conf:# and color ink print cartridges. This changes a
litt whenever you

/etc/pnm2ppa.conf:# if there is a horizontal offset between right-to-left
and left-to-right

/etc/pnm2ppa.conf:# density of black ink used: 1 (least ink), 2 (default),
4 (most).

/etc/pnm2ppa.conf:# a calibration fi /etc/pnm2ppa.gamma, in which case
these

/etc/pnm2ppa.conf:# gEnh(i) = (int) (pow ((double) i / 256, Gamma) *
256)

/etc/pnm2ppa.conf:# Valid choices are: a4, er, gal:
/etc/pnm2ppa.conf:#papersize er # this is the default
/etc/pnm2ppa.conf:#papersize legal

An expression like:

let*

will match le, let, lett, lettt, and so on, no matter how
many "t"s at the end. Another way of saying this is
that the * allows the previous element to:

*be omitted entirely

sappear once

sappear two or more times

Access the labs: https:
https://kode.wiki/linux-labs

97

Kodekloud.com

In a grep command, we'd use it like this:

grep -r 'let*' /etc/

The * operator can be paired up with other
operators. For example, to look for something for
sequences that begin with a /, have 0 or more
characters and between, and end with another /, we
could use:

1.7/

Since . matches any ONE character and * says
"previous element can exist 0, 1, 2 or many more
times" we basically allow any sequence of
characters to exist between / and /.

We can now use this in grep:

grep -r'/.*I' letc/

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

Access the labs: https:
https://kode.wiki/linux-labs

97

Kodekloud.com

KODEKLOUD

*: Match The Previous Element © Or More Times

$ grep -r '/.*/"' /etc/ Begins with /; has 0 or more characters between; ends with a /

/etc/man_db.conf:# before man.
/etc/man_db. conf:MANDB_MAP
/var/cache/man/fsstnd
/etc/man_db.conf:MANDB_MAP
man

/etc/man_db. conf:MANDB_MAP

oldlocal
/etc/man_db. conf:MANDB_MAP

local
/etc/man_db.conf:MANDB_MAP

X11R6
/etc/man_db.conf:MANDB_MAP
/etc/nanorc:# set quotestr "A([1*([#:>|}1]//))+"
/etc/nanorc:## include syntax_file.nanorc"
/etc/nanorc:include *.nanorc”
/etc/pbm2ppa.conf:# Sample configuration file for the HP720 HP1000
PPA Printers
/etc/pbm2ppa.conf:# pbm2ppa.conf
/etc/pnm2ppa.conf:# pnm2ppa.conf
/etc/pnm2ppa.conf:# configuration file pnm2ppa.conf), and not from
configuration files
/etc/pnm2ppa.conf:# a calibration file pnm2ppa.gamma, in which case
these
/etc/mailcap:audio xdg-open %s

The * operator can be paired up with other
operators. For example, to look for something for
sequences that begin with a /, have 0 or more
characters and between, and end with another /, we
could use:

1.7/

Since . matches any ONE character and * says
"previous element can exist 0, 1, 2 or many more

Access the labs: https:
https://kode.wiki/linux-labs 98

Kodekloud.com

times" we basically allow any sequence of
characters to exist between / and /.

Access the labs: https:
https://kode.wiki/linux-labs

98

Kodekloud.com

KODEKLOUD

+: Match The Previous Element 1 Or More Times

'e*' Jetc/

H
postscript ; /usr/bin/xdg-open %s

/html; /usr/bin/xdg-open %s ; copiousoutput
n:1 165536

165536:65536

es:231072:65536

d:296608:65536

Let's say we want to find all sequences of
characters where 0 appears one or more times. We
might be tempted to use:

grep -r '0* /etc/

But this also matches lines that contain no zeroes at
all. Why is that? Because * lets the previous
character exist one or more times, but also ZERO
times. It basically allows that element to be optional
in our search. So, we need another operator that

Access the labs: https:
https://kode.wiki/linux-labs

99

Kodekloud.com

forces the element to exist at least one time, or
many more. + does this:

0+

would find strings like:

00
000
0000

and so on

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +

Access the labs: https:
https://kode.wiki/linux-labs

99

Kodekloud.com

works like a literal + instead of an operator. Why is
this? By default, grep uses "basic regular
expressions".

Its manual page has this to say: "In basic regular
expressions the meta-characters ?, +, {, |, (, and)
lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we
have to add a \ before it, make it "\+". Our command
becomes:

grep -r 'O\+' /etc/

But this can become confusing really fast. We saw
we already use something like \. to turn the .
operator into a regular . Now we use \ to turn a
regular + into the + operator. It will be hard to keep
track of what to backslash and what not to. So we
can go the easier route, use "extended regex"
instead, which doesn't require us to backslash ?, +,

{,], (,and).

Access the labs: https:
https://kode.wiki/linux-labs

Kodekloud.com

We use extended regex by adding the -E option to
grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep
command. Using "egrep" is the same as typing
llgrep _E".

egrep -r '0+' /etc/

So you can make it a habit to always use egrep
instead of grep, to avoid mistakes where you forgot
to backslash one of the regex operators.

Access the labs: https:
https://kode.wiki/linux-labs 99

Kodekloud.com

KODEKLOUD

+: Match The Previous Element 1 Or More Times

e/*; /usr/bin/xdg-open %s

application/msword; /usr/bin/xdg-open %s

Let's say we want to find all sequences of
characters where 0 appears one or more times. We
might be tempted to use:

grep -r '0* /etc/

But this also matches lines that contain no zeroes at
all. Why is that? Because * lets the previous
character exist one or more times, but also ZERO
times. It basically allows that element to be optional
in our search. So, we need another operator that

Access the labs: https:
https://kode.wiki/linux-labs 100

Kodekloud.com

forces the element to exist at least one time, or
many more. + does this:

0+

would find strings like:

00
000
0000

and so on

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +

Access the labs: https:
https://kode.wiki/linux-labs 100

Kodekloud.com

works like a literal + instead of an operator. Why is
this? By default, grep uses "basic regular
expressions".

Its manual page has this to say: "In basic regular
expressions the meta-characters ?, +, {, |, (, and)
lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we
have to add a \ before it, make it "\+". Our command
becomes:

grep -r 'O\+' /etc/

But this can become confusing really fast. We saw
we already use something like \. to turn the .
operator into a regular . Now we use \ to turn a
regular + into the + operator. It will be hard to keep
track of what to backslash and what not to. So we
can go the easier route, use "extended regex"
instead, which doesn't require us to backslash ?, +,

{,], (,and).

Access the labs: https:
https://kode.wiki/linux-labs 100

Kodekloud.com

We use extended regex by adding the -E option to
grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep
command. Using "egrep" is the same as typing
llgrep _E".

egrep -r '0+' /etc/

So you can make it a habit to always use egrep
instead of grep, to avoid mistakes where you forgot
to backslash one of the regex operators.

Access the labs: https:
https://kode.wiki/linux-labs 100

Kodekloud.com

+: Match The Previous Element 1 Or More Times

0+ mp

$ grep -r '0+' /etc/ $ man grep

/etc/brltty/Keyboard/keypad.ktb:bind IKP2 MENU_NEXT_ITEM In basic regular expressions the meta-characters
/etc/brltty/Keyboard/keypad.ktb:bind IKP7 MENU_FIRST_ITEM ?, +, {, |, (, and) lose their special meaning;
/etc/brltty/Keyboard/keypad.ktb:bind IKP1 MENU_LAST_ITEM instead use the backslashed versions \?, \+, \{,
/etc/brltty/Keyboard/keypad.ktb:bind IKP9 MENU_PREV_SETTING \l, \(, and \).
/etc/brltty/Keyboard/keypad.ktb:bind IKP3 MENU_NEXT_SETTING

/etc/brltty/Keyboard/keypad.ktb:bind IKP5 MENU_PREV_LEVEL

/etc/brltty/Keyboard/keypad.ktb:bind IKPEnter PREFMENU

/etc/brltty/Keyboard/keypad.ktb:bind IKPP1lus PREFSAVE

/etc/brltty/Keyboard/keypad.ktb:bind IKPMinus PREFLOAD

grep: /etc/libvirt: Permission denied

grep: /etc/wpa_supplicant/wpa_supplicant.conf: Permission denied

/etc/mime.types:application/vnd.d21.coursepackagelpd+zip

grep: /etc/sudo-ldap.conf: Permission denied

grep: /etc/sudo.conf: Permission denied

grep: /etc/sudoers: Permission denied

grep: /etc/sudoers.d: Permission denied

grep: /etc/iscsi/iscsid.conf: Permission denied

/etc/sane.d/mustek_pp.conf:# - cisi2e (for Mustek 1200CP+

& OEM versions),

/etc/sane.d/mustek_pp.conf:# scanner Mustek-1200CP+ ©x378 cis120

/etc/sane.d/mustek_pp.conf:# scanner mustek-cis1200+ * cis120

/etc/sane.d/tecol.conf:scsi "RELISYS" "VM3530+" Scanner * * * @

0+

would find strings like:

00
000

and so on.

Access the labs: https:
https://kode.wiki/linux-labs 101

Kodekloud.com

We might think we can write this in grep like this:

grep -r '0+' /etc/

But this doesn't look like the result we want. Our +
works like a literal + instead of an operator. Why is
this? By default, grep uses "basic regular
expressions".

Its manual page has this to say: "In basic regular
expressions the meta-characters ?, +, {, |, (, and)
lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \)"

That means, to use "+" as an operator here, we
have to add a \ before it, make it "\+". Our command
becomes:

grep -r 'O\+' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 101

Kodekloud.com

But this can become confusing really fast. We saw
we already use something like \. to turn the .
operator into a regular . Now we use \ to turn a
regular + into the + operator. It will be hard to keep
track of what to backslash and what not to. So we
can go the easier route, use "extended regex"
instead, which doesn't require us to backslash ?, +,

{,], (,and).

We use extended regex by adding the -E option to
grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep
command. Using "egrep" is the same as typing
"grep -E".

egrep -r '0+' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 101

Kodekloud.com

So you can make it a habit to always use egrep
instead of grep, to avoid mistakes where you forgot
to backslash one of the regex operators.

Access the labs: https:
https://kode.wiki/linux-labs 101

Kodekloud.com

KODEKLOUD

+: Match The Previous Element 1 Or More Times

$ grep -r 'O\+' /etc/

/etc/pnm2ppa.conf:# The setting is correct when alignments "¢" are
correct.

/etc/pnm2ppa.conf:#colorshear

/etc/pnm2ppa.conf:#blackshear

/etc/pnm2ppa.conf:# © = no black ink. This affects black ink bordered by
whitespace

/etc/pnm2ppa.conf:# (i.e., 256 times (i*(1.0/256)) to the power Gamma),

/etc/pnm2ppa.conf:# where (int) i is the ppm color intensity, in the range

- 255.
/etc/pnm2ppa.conf:# the corresponding color. Gamma = 1.0 corresponds to
no
/etc/pnm2ppa.conf:#GammaR 1. # red enhancement
/etc/pnm2ppa.conf:#GammaG 1. # green enhancement
/etc/pnm2ppa.conf:#GammaB 1. # blue enhancement
/etc/pnm2ppa.conf:# which gives Gamma = 1.0 - ©.033 * GammaIdx :
/etc/pnm2ppa. conf: #RedGammaIdx
/etc/pnm2ppa. conf:#GreenGammaIdx
/etc/pnm2ppa. conf:#BlueGammaIdx
/etc/pnm2ppa.conf:# by default the printing sweeps are now bidirectional
(unimode 0);
/etc/pnm2ppa.conf:# set their values to © to switch off the corresponding
ink type:
/etc/subuid-:aaron:1 165536
/etc/subuid-:charles:231072:65536

That means, to use "+" as an operator here, we
have to add a \ before it, make it "\+". Our command
becomes:

grep -r '0\+' /etc/

But this can become confusing fast. We saw we
already use something like \. to turn the . operator
into a regular . Now we use \ to turn a regular + into
the + operator. It will be hard to keep track of what

Access the labs: https:
https://kode.wiki/linux-labs

102

Kodekloud.com

to backslash and what not to. So, we can go the
easier route, use "extended regex" instead, which
doesn't require us to backslash ?, +, {, |, (, and).

We use extended regex by adding the -E option to
grep

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep
command. Using "egrep" is the same as typing
llgrep _E".

egrep -r '0+' /etc/

So, you can make it a habit to always use egrep
instead of grep, to avoid mistakes where you forgot
to backslash one of the regex operators.

Access the labs: https:
https://kode.wiki/linux-labs 102

Kodekloud.com

KODEKLOUD

Extended

Regular Expressions

Let’s look at analyzing text using basic regular expressions in Linux.

Access the labs: https:
https://kode.wiki/linux-labs 103

Kodekloud.com

KODEKLOUD

Extended Regular Expressions

$ grep -Er '0+' /etc/ ™ $ egrep r '0+' /etc/

/etc/pnm2ppa.conf:# The setting is correct when alignments "©" are

correct.

/etc/pnm2ppa. conf:#colorshear

/etc/pnm2ppa. conf:#blackshear

/etc/pnm2ppa.conf:# © = no black ink. This affects black ink bordered by

whitespace

/etc/pnm2ppa.conf:# (i.e., 256 times (i*(1.9/256)) to the power Gamma),

/etc/pnm2ppa.conf:# where (int) i is the ppm color intensity, in the range
- 255.

/etc/pnm2ppa.conf:# the corresponding color. Gamma = 1.0 corresponds to

no

/etc/pnm2ppa. conf:#GammaR 1. # red enhancement

/etc/pnm2ppa. conf:#GammaG 1. # green enhancement

/etc/pnm2ppa. conf:#GammaB 1. # blue enhancement

/etc/pnm2ppa.conf:# which gives Gamma = 1.0 - ©.033 * GammaIdx :

/etc/pnm2ppa. conf:#RedGammaIdx

/etc/pnm2ppa. conf: #GreenGammaIldx

/etc/pnm2ppa. conf:#BlueGammaIldx

/etc/pnm2ppa.conf:# by default the printing sweeps are now bidirectional

(unimode 9);

/etc/pnm2ppa.conf:# set their values to © to switch off the corresponding

ink type:

/etc/subuid-:aaron:1 165536

/etc/subuid-:charles:231072:65536

We saw we already use something like \. to turn the
. operator into a regular . Now we use \ to turn a
regular + into the + operator. It will be hard to keep
track of what to backslash and what not to. So, we
can go the easier route, use "extended regex"
instead, which doesn't require us to backslash ?, +,

{,], (, and).

We use extended regex by adding the -E option to
grep

Access the labs: https:
https://kode.wiki/linux-labs 104

Kodekloud.com

grep -E -r '0+' /etc/

Or even easier, we use the equivalent egrep
command. Using "egrep" is the same as typing
"grep -E".

egrep -r '0+' /etc/

So, you can make it a habit to always use egrep
instead of grep, to avoid mistakes where you forgot
to backslash one of the regex operators.

Access the labs: https:
https://kode.wiki/linux-labs 104

Kodekloud.com

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3,}"' /etc

000/09/xmldsig#

/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-2 620. htm1#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
xmlns="http://www.w3.0rg/2001/XMLSchema
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
targetNamespace="http://www.w3.0rg/2000/09/xmldsig#" version
elementFormDefault="qualified

grep: /etc/firewalld: Permission denied

/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8 controller which uses

/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
9 controller which

/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9 controller which

/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (BB in Unicode)

and 183 in

/etc/nanorc:## IS0-8859-1 (B7 in Unicode) seem to be good values for

these.

/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1

PPA Printers
/etc/pbm2ppa.conf:# 1
1000Cxi

To find all strings that contain at least 3 zeros:

0{3,}

egrep -r '0{3,} /etc/

To find all strings that contain "1" followed by at

most 3 zeroes:

Access the labs: https:
https://kode.wiki/linux-labs

HP DeskJet 1 Cse,

105

Kodekloud.com

10{,3}

egrep -r '"10{,3}' /etc/

And to find all strings that contain exactly three
Zeroes:

0{3}

egrep -r '0{3}' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 105

Kodekloud.com

{}: Previous Element Can Exist “this many” Times

$ egrep -r '10{,3}' /etc/

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:

/600 (1 dot).

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:

4 (most).

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:

no

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:

/etc/pnm2ppa.conf
/etc/pnm2ppa.conf

#xoffset 60
sweeps of the print head, adjust these in units of

valid blackness ices are 1 2 3 4; controls the
density of black ink used: (least ink), 2 (default),

(i.e., 256 times (i*(1.0/256)) to the power Gamma),
the corresponding color. Gamma = 1.0 corresponds to

#GammaR 1.0 # red enhancement

#GammaG 1.0 # green enhancement

#GammaB 1.0 # blue enhancement

:# which gives Gamma = 1.0 - 0.833 * GammaIdx

:# (unimode 1) uncomment the next line . (The command

line options --uni

/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:
/etc/pnm2ppa.conf:

/etc/pnm2ppa.
/etc/pnm2ppa.
/etc/subuid-:
/etc/subuid-

To find all strings that contain "1" followed by at

#unimode
#black_ink
#color k
#cyan_ink
:#magenta_ink
:#yellow_ink

165536

:165536:65536
/etc/subuid-:charles:231072:65536

most 3 zeroes:

10{,3}

egrep -r '"10{,3}' /etc/

Note: This will also match 1s followed by no zeroes.

Access the labs: https:
https://kode.wiki/linux-la

bs

106

Kodekloud.com

And to find all strings that contain exactly three
zeroes:

0{3}

egrep -r '0{3}' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 106

Kodekloud.com

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3}' /etc/

/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-2 0620.htm1#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
http://www.w3.0rg/2001/XMLSchema™
http://www.w3.0rg/2 /09/xmldsig#"
http://www.w3.org/2 /09/xmldsig#" versiol
elementFormDefault="qualifie
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8 controller which uses
/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
9 controller which
/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9 controller which
/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (@BB in Unicode)
and 183 in
/etc/nanorc:## ISO-8859-1 (©@B7 in Unicode) seem to be good values for
these.
/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1
PPA Printers
/etc/pbm2ppa.conf:# 1 8 HP DeskJet 1006Cse,
1 Cxi
/etc/pbm2ppa.conf:#version 1
/etc/pnm2ppa.conf:#version 1
/etc/subuid-:aaron:100000:65536

And to find all strings that contain exactly three
zeroes:

0{3}

egrep -r '0{3}' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 107

Kodekloud.com

KODEKLOUD

?: Make The Previous Element Optional

$ egrep -r 'disabled?' /etc/

t to @ to polling.

/etc/vmware-tools/tools.conf.example:# Set to true to

deviceHelper plugin.

/etc/vmware-tools/tools.conf.example:# =false
/etc/containers/storage.conf:# Value s
/etc/dleyna-server-service.conf:# @ =
/etc/dleyna-server-service.conf:# You can't enable levels at
compile time

/etc/dleyna-server-service.conf:# If netf is enabled but the list is
empty, it behaves as .

/etc/tuned/tuned-main.conf:# Dynamicaly tune devices, if only
static tuning will be used.

/etc/tuned/tuned-main.conf:# Recommend functionality, if

"recommend” command will be not

/etc/enscript.cfg:# Enable / page prefeed.

grep: /etc/firewalld: Permission denied

/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being

/etc/smartmontools/smartd.conf:# -o VAL Enable/ automatic
offline tests (on/off)

/etc/smartmontools/smartd.conf:# -S VAL Enable/ attribute
autosave (on/off)

/etc/smartmontools/smartd_warning.sh:# Plugin directory (if
empty)

? will let the previous element exist precisely 0 or 1
times. This basically makes it optional: it can exist
once, or not at all.

Let's say we're trying to find all text that says
"disabled" or "disable". This means the last "d" is
optional, so we can write an expression like:

disabled?

To use in grep:

Access the labs: https:
https://kode.wiki/linux-labs

108

Kodekloud.com

egrep -r 'disabled?' /etc/

Note that this also matches the
word “disables.” This is a case where
the letter “d” did not come at the
end, and “disable” still matches.

Access the labs: https:
https://kode.wiki/linux-labs 108

Kodekloud.com

{}: Previous Element Can Exist “this many” Times

$ egrep -r '0{3,5}"' /etc/ O{min,max}

000/09/xmldsig#

/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd: [2]
http://www.w3.org/Consortium/Legal/IPR-FAQ-2 620.html#DTD
/etc/vmware-tools/vgauth/schemas/xmldsig-core-schema.xsd:<schema
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
targetNamespace="http://www.w3.0rg/2 /09/xmldsig#" version="0.1"
elementFormDefault="qualified">

grep: /etc/firewalld: Permission denied

/etc/smartmontools/smartd.conf:# Monitor 4 ATA disks connected to a 3ware
6/7/8 controller which uses

/etc/smartmontools/smartd.conf:# Monitor 2 ATA disks connected to a 3ware
El controller which

/etc/smartmontools/smartd.conf:# Monitor 2 SATA (not SAS) disks connected
to a 3ware 9 controller which

/etc/nanorc:## of tabs and spaces. 187 in ISO 8859-1 (BB in Unicode)
and 183 in

/etc/nanorc:## ISO-8859-1 (B7 in Unicode) seem to be good values for
these.

/etc/pbm2ppa.conf:# Sample configuration file for the HP720/HP820/HP1
PPA Printers

/etc/pbm2ppa.conf:# 1 8 HP DeskJet 1006Cse,
1 Cxi

In an expression like

0{min,max}

to find a match, zero has to exist at least min times
and at most max times.

To find all strings that contain 3, 4 or 5 zeroes:

0{3,5}

Access the labs: https:
https://kode.wiki/linux-labs

109

Kodekloud.com

egrep -r '0{3,5}' /etc/

To find all strings that contain at least 3 zeros:

0{3,}

egrep -r '0{3,} /etc/

To find all strings that contain "1" followed by at
most 3 zeroes:

10{,3}

egrep -r '10{,3}' /etc/

And to find all strings that contain exactly three
Zeroes:

Access the labs: https:
https://kode.wiki/linux-labs 109

Kodekloud.com

0{3}

egrep -r '0{3}' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 109

Kodekloud.com

KODEKLOUD

| : Match One Thing Or The Other

$ egrep -r 'enabled|disabled' /etc/

/etc/vmware-tools/tools.conf.example:#
/etc/vmware-tools/tools.conf.example:#: =false
/etc/dleyna-server-service.conf:# 0 =
/etc/dleyna-server-service.conf:# You can't enable levels

compile time

/etc/dleyna-server-service.conf:netf- =false
/etc/dleyna-server-service.conf:# If netf is but the list is
empty, it behaves as .

/etc/tuned/tuned-main.conf:# Dynamicaly tune devices, if only
static tuning will be used.

/etc/tuned/tuned-main.conf:# Recommend functionality, if

"recommend” command will be not

/etc/tuned/tuned-main.conf:# /etc/sysctl.conf. If , these sysctls
will be re-appliead

grep: /etc/firewalld: Permission denied

/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being

/etc/mcelog/mcelog.conf:dimm-tracking-
/etc/mcelog/mcelog.conf:socket-tracing-
/etc/smartmontools/smartd_warning.sh:# Plugin directory (if
empty)

/etc/nanorc:## To make sure an option is , use "unset <option>".

If we'd want to match "enabled" or "disabled", we
could use

enabled|disabled

So this basically matches what it finds on its left side
or its right side.

egrep -r 'enabled|disabled’ /etc/

Access the labs: https:
https://kode.wiki/linux-labs 110

Kodekloud.com

| : Match One Thing Or The Other

$ egrep -ir 'enabled?|disabled?' /etc/

grep: /etc/firewalld: Permission denied

/etc/mcelog/mcelog.conf:# An upstream bug prevents this from being

/etc/mcelog/mcelog.conf:# DIMM-tracking
/etc/mcelog/mcelog.conf:dimm-tracking- = yes

/etc/mcelog/mcelog.conf:# DIMM DMI pre-population unless supported

on your system
/etc/mcelog/mcelog.conf:socket-tracing- = yes

/etc/smartmontools/smartd.conf:# First ATA/SATA or SCSI/SAS disk.

all attributes,

/etc/smartmontools/smartd.conf:# -0 VAL /)
offline tests (on/off)

/etc/smartmontools/smartd.conf:# -S VAL /)
autosave (on/off)

/etc/smartmontools/smartd_warning.sh:# Plugin directory (
empty)

/etc/nanorc:## Please note that you must have configured nano with --

-nanorc

/etc/nanorc:## To make sure an option is , use "unset <option>".
/etc/nanorc:## When soft line wrapping is , make it wrap lines at

blanks

/etc/nanorc:## vim-style lock-files. This is just to let a vim

user know you

KODEKLOUD

And we could combine this with our previous trick
(make last "d" letter optional), to also find variations

like enable/enabled, disable/disabled:

egrep -r '‘enabled?|disabled?’ /etc/

Access the labs: https:
https://kode.wiki/linux-labs

111

Kodekloud.com

KODEKLOUD

[]: Ranges Or Sets

$ egrep -r 'cl[au]t' /etc/ [a-z] [0-9] [abz954]

/etc/man_db.conf:# Range of terminal widths permitted when displaying
pages. If the

/etc/man_db.conf:# terminal falls outside this range, pages will not
be created (if

/etc/man_db.conf:# If CATWIDTH is set to a non-zero number, pages will
always be

/etc/man_db.conf:# NOCACHE keeps man from creating pages.
/etc/nanorc:## Use -from-cursor-to-end-of-line by default.
/etc/nanorc:# set fromcursor

/etc/nanorc:## (The old form, ' ', is depre ed.)

/etc/nanorc:## double click), and execute short s. The mouse will work
in the X

/etc/nanorc:## Don't display the helpful short lists at the bottom of
the screen.

/etc/nanorc:## (The old form, 'justifytrim', is deprecated.)
/etc/nanorc:## Disallow file modification. Why would you want this in an
rcfile? ;)

/etc/nanorc:# bind M-B wordleft main

/etc/nanorc:# bind M-N wordright main

/etc/mailcap:application/msword; /usr/bin/xdg-open %s
/etc/mailcap:application/pdf; /usr/bin/xdg-open %s
/etc/mailcap:application/postscript ; /usr/bin/xdg-open %s

Now it's time to see how we can put all this
knowledge to use and combine multiple regex
operators to fine-tune our searches.

But first, let's learn about ranges and sets. A range
is specified in the form of:

[@-Z] - this will match any one lowercase letter, from
a,b,cde...toz

[0-9] - will match any one digit from 0,1,2... t0 9

Access the labs: https:
https://kode.wiki/linux-labs 112

Kodekloud.com

A set is specified in this form:

[@abz954] will match any one character within, a, b,
z,9,50r4

So, to find all strings that contain the text cat or cut,
we'd use:

clau]t

egrep -r 'c[au]t’ /etc/'

Access the labs: https:
https://kode.wiki/linux-labs 112

Kodekloud.com

$ egrep -r '/dev/.*' /etc/

/etc/smartmontools/smartd.conf:#

[]: Ranges Or Sets

/etc/smartmontools/smartd.conf:# On FreeBSD should be used

instead

/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#

/etc/smartmontools/smartd_warning.sh:
/etc/smartmontools/smartd_warning.sh:
/etc/smartmontools/smartd_warning.sh:
/etc/smartmontools/smartd_warning.sh:

/etc/smartmontools/smartd_warning.sh:
warning.sh:

/etc/smartmontools/smartd

/etc/smartmontools/smartd_warning.sh:
/etc/smartmontools/smartd_warning.sh:
<

hostname="eval $cmd 2>
dnsdomain="eval $cmd 2>
nisdomain="eval $cmd 2>

echo "$cmd <
"$cmd" <
echo "$cmd <
"$cmd" <

echo "exec '$SMARTD_MAILER®

KODEKLOUD

With ranges and sets we can make our searches
both wide, and specific, even at the same time. For
example, let's ask ourselves: how would we find all

special device files which have names like

/dev/sdal or similar? We could think like this: find all
strings that contain "/dev/" followed by any random

characters:

/dev/.”

Access the labs: https:

https://kode.wiki/linux-labs

113

Kodekloud.com

egrep -r '/dev/.*' /etc

But this matches weird stuff. .* is "greedy" matching
way too many things after it captures what we're
looking for. So, we can make our search wide
enough to catch all /dev devices, but specific
enough to only capture the parts we need. We do
this with ranges.

We can say: "after /dev/ match any number (*) of
lowercase letters, from a to z.

/dev/[a-z]*

egrep -r '/dev/[a-z]*™' /etc/

Looks a little bit better, but we see some things are
still missed. /dev/twl is matched instead of the entire
/dev/twl0. How can we catch the digits at the end
too? Easy, we specify that a digit from 0 to 9 should
exist there

Access the labs: https:
https://kode.wiki/linux-labs 113

Kodekloud.com

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9]' /etc/

But now we run into another problem. Only things
that have a digit at the end are matched with this
new regex. We'll only find /dev/sda1 but not
/devisda. This is an easy fix, we just make the digit
at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Access the labs: https:
https://kode.wiki/linux-labs 113

Kodekloud.com

KODEKLOUD

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*' /etc/

/etc/smartmontools/smartd. -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd. 3 SD 0 should be used instead
/etc/smartmontools/smartd. 8 0 -d 3ware,® -a -s L/../../2/01
/etc/smartmontools/smartd. 8 0 -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd. 3 ,0 -a -s L/../../2/01
/etc/smartmontools/smartd. 3 ;1 -a-sL/../../2/03
/etc/smartmontools/smartd. -d hpt,1/1 -a -s L/../../7/01
/etc/smartmontools/smartd. 3 -d hpt,1/2 -a -s L/../../7/@2
/etc/smartmontools/smartd. 8 -d hpt,1/3 -a -s L/../../7/@3
/etc/smartmontools/smartd. 8 -d hpt,1/4/1 -a -s L/../../2/01
/etc/smartmontools/smartd.conf:# -d hpt,1/4/2 -a -s L/../../2/@3
/etc/smartmontools/smartd_warning.sh: hostname="eval $cmd 2> > || continue
/etc/smartmontools/smartd_warning.sh:) > || continue
/etc/smartmontools/smartd_warning.sh: > || continue
/etc/smartmontools/smartd_warning.sh: echo "$cmd < "
/etc/smartmontools/smartd_warning.sh: "$cmd" <
/etc/smartmontools/smartd_warning.sh: echo "$cmd <
/etc/smartmontools/smartd_warning.sh: "$cmd" <
/etc/smartmontools/smartd_warning.sh: echo "exec '$SMARTD_MAILER' <

We can say: "after /dev/ match any number (*) of
lowercase letters, from a to z.

/dev/[a-z]*

egrep -r '/dev/[a-z]*™' /etc/

Looks a little bit better, but we see some things are
still missed. /dev/twa is matched instead of the

Access the labs: https:
https://kode.wiki/linux-labs 114

Kodekloud.com

entire /dev/twa0. How can we catch the digits at the
end too? Easy, we specify that a digit from 0 to 9
should exist there

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9] /etc/

But now we run into another problem. Only things
that have a digit at the end are matched with this
new regex. We'll only find /dev/sda1 but not
Idevisda. This is an easy fix, we just make the digit
at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Access the labs: https:
https://kode.wiki/linux-labs 114

Kodekloud.com

KODEKLOUD

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*[0-9]' /etc/

/etc/sane.d/umax_pp.conf:#

/etc/sane.d/fujitsu.conf:#scsi

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/gphoto2.conf:port=serial:

/etc/sane.d/kodak.conf:#scsi

/etc/sane.d/ma15@9.conf:#

/etc/sane.d/mustek_usb.conf:#

/etc/sane.d/snapscan.conf:# For SCSI scanners specify the generic device, e.g. on Linux.
/etc/sane.d/snapscan.conf:#

grep: /etc/firewalld: Permission denied

/etc/smartmontools/smartd.conf:# For example o , and so on.
/etc/smartmontools/smartd.conf:# -d 3ware,® -a -s L/../../2/01
/etc/smartmontools/smartd.conf:# -d 3ware,1 -a -s L/../../2/03
/etc/smartmontools/smartd.conf:# On FreeBSD should be used instead
/etc/smartmontools/smartd.conf:# -d 3ware,® -a -s L/../../2/01
/etc/smartmontools/smartd.conf:# -d 3ware,1 -a -s L/../../2/03

Easy, we specify that a digit from 0 to 9 should exist
there

/dev/[a-z]*[0-9]

egrep -r '/dev/[a-z]*[0-9] /etc/

But now we run into another problem. Only things
that have a digit at the end are matched with this
new regex. We'll only find /dev/sda1 but not

Access the labs: https:
https://kode.wiki/linux-labs

115

Kodekloud.com

/dev/sda. This is an easy fix, we just make the digit
at the end optional with ?.

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Access the labs: https:
https://kode.wiki/linux-labs 115

Kodekloud.com

[]: Ranges Or Sets

$ egrep -r '/dev/[a-z]*[0-9]?"' /etc/

[
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd.conf:#
#
#
#
#
#

On

/etc/smartmontools/smartd.conf:
/etc/smartmontools/smartd.conf:
/etc/smartmontools/smartd.conf:
/etc/smartmontools/smartd.conf:
/etc/smartmontools/smartd.conf:
/etc/smartmontools/smartd.conf:#
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.
/etc/smartmontools/smartd_warning.

This is an easy fix, we just make the digit at the end

optional with ?.

-d 3ware,1 -a -s L/../../2/03
FreeBSD should be used instead
-d 3ware,@® -a -s L/../../2/01
-d 3ware,1 -a -s L/../../2/03
,0 -a -s L/../../2/01
,1 -a-s L/../../2/03
-d hpt,1/1 -s L/../../7/01
-d hpt,1/2 -a -s L/../../7/02
-d hpt,1/3 -a -s L/../../7/03
-d hpt,1/4/1 -a -s L/../../2/01
-d hpt,1/4/2 -a -s L/../../2/@3
hostname="eval $cmd 2> * || continue
dnsdomain="eval $cmd 2> > || continue
nisdomain="eval $cmd 2> > || continue
echo "$cmd < "

echo "$cmd <
"$cmd" <
echo "exec '$SMARTD_MAILER' <

egrep -r '/dev/[a-z]*[0-9]?' /etc/

Looks much better now.

Access the labs: https:
https://kode.wiki/linux-labs

116

Kodekloud.com

(): Subexpressions

$ egrep -r '/dev/[a-z]*[0-9]?"' /etc/

/etc/sane.d/dc25. conf:#po

/etc/sane.d/dc25. conf:#po

/etc/sane.d/ul2.conf:# device
/etc/sane.d/ul2.conf:# device
/etc/sane.d/dmc.conf:

/etc/sane.d/umax.conf:

/etc/sane.d/umax.conf:
/etc/sane.d/epjitsu.conf:#usb scanner@
/etc/sane.d/epjitsu.conf:# if echo "$nal" | grep -q
'\.nal$' - 2>/dev/null; then
/etc/sane.d/epson.conf:#usb
/etc/sane.d/epson.conf:#usb
/etc/sane.d/umax1220u.conf:#
/etc/sane.d/umax1220u.conf:# scanner@
/etc/sane.d/umax_pp.conf:# device : N
/etc/sane.d/umax_pp.conf:# on *BSD, you may provid
ppi device: o

/etc/sane.d/umax_pp.conf:# s eee
/etc/sane.d/fujitsu.conf:#scsi
/etc/sane.d/fujitsu.conf:#usb scanner@
/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

/etc/sane.d/v4l.conf:

In math we can see this:

1+2*3

1+2%*3

1+6 =7

(1+2)*3

3*3=9

KODEKLOUD

This is 1+6=7. That's because, first, multiplication
will be done, and then, addition. But what if we first
want to add 1+2 and then multiply by 3? We write:

(1+2)*3

Access the labs: https:
https://kode.wiki/linux-labs

117

Kodekloud.com

This will be 3*3=9.

In regex we can do a very similar thing.

Let's take a look at our last expression:

egrep -r '/dev/[a-z]*[0-9]?" /etc/

If we scroll up, we'll see we still don't match
everything we need perfecily:

/dev/ttyOpO

pO0 is left out. Why is that? Because our expression,
after it finds /dev/ matches any number of ato z
characters, then a digit at the end. And that's it,
that's where the match ends. So, in /dev/ttyOp0 after
that first O is hit our regex is happy with the partial
result. How could we correct this?

Access the labs: https:
https://kode.wiki/linux-labs 117

Kodekloud.com

KODEKLOUD

: Subexpressions

r '/dev/([a-z]*[@-9]2)*" /etc/

ne.d/coolscan3.conf:#scsi:

[a-z]*[0-9]?
ttyOp0

We could tell it that after /dev/ we have some letters,
and a digit at the end, but after that, the same thing
can repeat 0,1,2,3 or more times. There can be
other sequences of letters followed by a digit. This
way, /dev/tty0 would match first, then pO will be
added to this match by that repetition.

So, we would basically want to say that this part of
the regex:

[a-2]*[0-9]?

Access the labs: https:
https://kode.wiki/linux-labs 118

Kodekloud.com

should look for this pattern existing 0, 1, 2, 3 or
many more times, so it can match things like tty0p0.
What makes regex look for something to exist 0 or
more times? The *. But if we add it at the end, we
get

[a-z]*[0-9]?*

This isn't good, as the * would apply to the previous
element only, and we want to apply it to our whole
construct here. Again, easy solution. We just wrap
our construct in () and this way, * will apply to our
entire subexpression wrapped in parentheses,
instead of the last element only.

([a-z]*[0-9]?)

egrep -r '/dev/([a-z]*[0-9]7?)*' /etc/

And now we get a full match for strings like
/devl/tty0pO0.

And if we scroll up in our result list, we'll still find

Access the labs: https:
https://kode.wiki/linux-labs 118

Kodekloud.com

some things that don't quite work

like /dev/ttyS0O with the SO not matching because we
didn't include uppercase letters in our regex.

Access the labs: https:
https://kode.wiki/linux-labs 118

Kodekloud.com

KODEKLOUD

(): Subexpressions

$ egrep -r egrep -r '/dev/(([a-z]|[A-Z])*[@-9]?)*" /etc/

/etc/sane.d/coolscan3.conf:#scsi:
/etc/sane.d/coolscan3.conf:#usb:
/etc/sane.d/dc210.conf:port=
/etc/sane.d/dc210.conf:#port=
/etc/sane.d/dc210.conf:#port=
/etc/sane.d/dc210.conf:#port=
/etc/sane.d/dc210. conf:#port=

/etc/sane.d/dc240.conf:port

/etc/sane.d/dc240. conf:#port=
/etc/sane.d/dc25. conf:port=
/etc/sane.d/dc25. conf:#port=
/etc/sane.d/dc25. conf:#port=
/etc/sane.d/dc25. conf:#port=
/etc/sane.d/dc25. conf:#port=
/etc/sane.d/ul2.conf:# device
/etc/sane.d/ul2.conf:# device
/etc/sane.d/dmc.conf:
/etc/sane.d/umax.conf:
/etc/sane.d/umax.conf:

So, we could tell our expression to look for
"lowercase letters OR uppercase" with the |
operator.

But writing it like this would be a mistake:

([a-z]|[A-Z][0-9]7)"

Because now the * would only apply to [A-Z] and we
need to apply it to our entire [a-Z]|[A-Z]. Once again,

Access the labs: https:
https://kode.wiki/linux-labs 119

Kodekloud.com

we can wrap in parentheses to fix this.

(([a-z]|[A-Z])"[0-9]?)"

egrep -r '/dev/(([a-z]|[A-Z])*[0-9]7?)*" /etc/

Now ttySO matches. And if we would go on, we
could fix things like /dev/term/a not matching,
because our regex stops when it encounters the
next /, and so on. This is the kind of logic and fine-
tuning we would go through when fixing our regular
expressions or making them laser-focused on what
we need to find.

Access the labs: https:
https://kode.wiki/linux-labs 119

Kodekloud.com

KODEKLOUD

[~]: Negated Ranges Or Sets

$ egrep -r 'http[~s]' /etc/

/etc/containers/registries.conf.d/001-rhel-
shortnames.conf:"openshift4/ose-egress- -proxy" =
"registry.redhat.io/openshift4/ose-egress- -proxy"
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"rhel8/
24" = "registry.redhat.io/rhel8/ -24"
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"rhscl/ -
24-rhel7" = "registry.access.redhat.com/rhscl/ -24-rhel7" [abC123]
/etc/containers/registries.conf.d/001-rhel-shortnames.conf:"ubi8/ -24"
= "registry.redhat.io/ubi8/ -24" [a-Z]
/etc/containers/registries.d/default.yaml:# For reading signatures, schema
may be , https, or file.
/etc/containers/registries.d/default.yaml:# sigstore: N
://privateregistry.com/sigstore/ http[S] - h‘t‘éﬁs
/etc/wgetrc:# You can set the default proxies for Wget to use for
https, and ftp.
/etc/wgetrc:#https_proxy = ://proxy.yoyodyne. com: 18023/
/etc/wgetrc:#http_proxy = ://proxy.yoyodyne.com:18023/
/etc/wgetrc:#ftp_proxy = ://proxy.yoyodyne.com: 18023/
/etc/enscript.cfg:# along with Enscript. If not, see
< ://www.gnu.org/licenses/>.
grep: /etc/firewalld: Permission denied
/etc/smartmontools/smartd.conf:# Home page is:
://www.smartmontools.org

Imagine we want to search for links to website
addresses that don't use encryption. This means we
would want to search for "http" strings, but exclude
"https".

We saw sets are in the form of [abc123] and ranges
[a-z]. If we add a ” in here, we can negate them, tell
regex "the elements in this set or range should not
exist at this position"”

So to look for http links, we could have a regex that

Access the labs: https:
https://kode.wiki/linux-labs 120

Kodekloud.com

makes sure http is not followed by the s letter:

http[/s]

egrep -r 'http[*s]' /etc/

Access the labs: https:
https://kode.wiki/linux-labs 120

Kodekloud.com

KODEKLOUD

[~]: Negated Ranges Or Sets

$ egrep -r '/["a-z]' /etc/ https://regexr.com

/etc/smartmontools/smartd_warning.sh: cmd="$plugindir/¢{ad#@}"
/etc/qemu-ga/fsfreeze-hook:for file in "$FSFREEZE_D"/* ; do

/etc/man_db. conf:MANPATH_MAP /usr/x11R6/bin /usr/x11R6/man
/etc/man_db. conf:MANPATH_MAP /usr/bin/x11 /usr/x11R6/man
/etc/man_db. conf:MANDB_MAP /usr/x11R6/man /var/cache/man
/etc/nanorc:## Each user can save his own configuration to ~/.nanorc

/etc/nanorc:## Don't convert files from DOS/Mac format.

/etc/nanorc:# set quotestr "A([1*([#:>[}1]//))+"

/etc/nanorc:## Fix Backspace/Delete confusion problem.

/etc/nanorc:include "/usr/share/nano/*.nanorc"

/etc/pbm2ppa.conf:# Sample configuration file for the HP720/1iP820/1P100@ PPA Printers
/etc/pbm2ppa.conf:# 1 inch margins all around (at 600 DPI)

/etc/pbm2ppa.conf:# 1 inch margins all around (at 660 DPI)

/etc/pbm2ppa.conf:# 1 inch margins all around (at 600 DPI)

/etc/pnm2ppa.conf:# paper. Units are dots (1/600 inch). Add a positive number of dots to
/etc/pnm2ppa.conf:# sweeps of the print head, adjust these in units of 1"/600 (1 dot).
/etc/pnm2ppa.conf:# gEnh(i) = (int) (pow ((double) i 256, Gamma) * 256)

In this case, we used a set with only one character,
but we can use multiple if we want.

For example, we could tell our pattern: "After a /,
there should not be any lowercase letter":

egrep -r '/["a-z]' letc

Keep in mind that for any pattern you're trying to
match, there are multiple regex solutions you may
find. To get this right, you should practice until you

Access the labs: https:
https://kode.wiki/linux-labs

121

Kodekloud.com

feel comfortable with regular expressions.

It's also worth noting that regex is not limited to
grep. You can use regular expressions in a lot of
programs that deal with search patterns. For
example, the sed utility also supports regular
expressions.

Additional Resources
https://regexr.com/

Access the labs: https:

https://kode.wiki/linux-labs 121

Kodekloud.com

KODEKLOUD

Manage Local

User Accounts

Now let's look at how to create, delete, and modify
local user accounts in Linux.

Each person that needs to log in to our Linux server
should have their own, separate, user account. This
allows them to have personal files and directories,
protected by proper permissions. They also get to
choose their own settings for whatever tools they
use. And it also helps us as administrators. We can
limit the privileges of each user to only what they
require to do their job. This can sometimes reduce
or prevent the damage when someone accidentally

Access the labs: https:
https://kode.wiki/linux-labs 122

Kodekloud.com

writes the wrong command. And it can help with the
overall security of the system.

Access the labs: https:
https://kode.wiki/linux-labs 122

Kodekloud.com

KODEKLOUD

Local User Accounts

$ sudo useradd john

$ 1s -a /etc/skel
.. .bash_logout .bash_profile .bashrc

$ useradd --defaults == $ useradd -D

GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash

SKEL=/etc/skel] .
CREATE_MAIL_SPOOL=yes /home/john /bin/bash

cat /etc/login.defs

ease note that the parameters in is configuration file contro

It will be up to us to manage these user accounts,
which are sometimes simply called "users". So, let's
dive right in and see how we create a new user on a
Linux system. The command that lets us add a new
user is intuitively called useradd. The simplest form
we can use is:

sudo useradd john

where john can be replaced with whatever
username we want to choose for this specific
account.

Access the labs: https:
https://kode.wiki/linux-labs 123

Kodekloud.com

After we run this the following things happen:

*A new user called "john" is added to the system

*A new group also called "john" is automatically
created. The group "john" will be set to be the
primary group of the user "john".

A home directory is created for this account at
/home/john/. This is where John can store his
personal files and subdirectories, plus his program
settings.

*Their default shell will be set to be the program
found at /bin/bash. Whenever John logs in, this is
the application he'll be "dropped into". Effectively,
his entire login session will run inside this app.

*All files from /etc/skel will be copied to the user's
home directory /homel/john/. You can explore it with
Is -a /etc/skel/ if you're curious to see what's inside.
We'll see why this so-called "skeleton directory” is
useful, in one of the next lessons.

*The account will never expire. We'll see what this
means, later in this lesson.

All these things happen because the operating
system is configured to take some default actions
for each newly added account. We can explore
these defaults with the following commands:

useradd --defaults

Access the labs: https:
https://kode.wiki/linux-labs 123

Kodekloud.com

or equivalent command
useradd -D

Other defaults related to account creation can be
seen by exploring this file:

cat /etc/login.defs

The comments explain what each setting does.

Access the labs: https:
https://kode.wiki/linux-labs 123

Kodekloud.com

KODEKLOUD

Local User Accounts

$ sudo passwd john

$ sudo userdel john

$ sudo userdel --remove john == $ sudo userdel -r john

$ sudo useradd --shell /bin/othershell --home-dir /home/otherdirectory/ john
$ sudo useradd -s /bin/othershell -d /home/otherdirectory/ john

$ sudo useradd -s /bin/othershell john

Ok, at this point we have an account for "john". But
how does he log in? His account has no password
now. To set a password for him, we can run

sudo passwd john
If later, we want to delete an account:
sudo userdel john

Note, however, that this will only delete the "john"
user account. Also, the group with the same name,
"john" might get auto-removed. But john's home
directory at /nome/john/ will remain. And that's

Access the labs: https:
https://kode.wiki/linux-labs

124

Kodekloud.com

normal, because his personal files might still be
needed. But if we're certain that those files aren't
necessary anymore, we can make the userdel
command also remove the user's home directory
and his/her mail spool with:

sudo userdel --remove john
or equivalent
sudo userdel -r john

Coming back to the useradd command, if we're not
happy with the defaults, we could choose a different
shell and home directory with a command such as:

sudo useradd --shell /bin/othershell --home-dir
/home/otherdirectory/ john

or equivalent

sudo useradd -s /bin/othershell -d
/home/otherdirectory/ john

Of course, if we only want to choose a different
shell, but keep the default location for the home
directory, we can just pass the shell option:

sudo useradd -s /bin/othershell john

Access the labs: https:
https://kode.wiki/linux-labs 124

Kodekloud.com

KODEKLOUD

Local User Accounts

$ cat /etc/passwd

$ sudo useradd --uid 1100 smith == $ sudo useradd -u 1100 smith

$ 1s -1 /home/
druwx------. 4096 Dec 16 10:01
drwx------. jane j 113 Dec 16 13:00 jane
dr ----. john john 78 Oct 19 19:39 john
drw: i 78 Oct 19 19:39 smith

$ 1s -1n /home/

drwx------. 16 1600 1000 4096 Dec 16 10:01

drwx------. 4 1001 1001 13 Dec 16 13:00 jane
drwx------. 3 1002 1002 78 Oct 19 19:39 john
drwx------. 3 1100 1100 78 Oct 19 19:39 smith

These account details, such as usernames, user
IDs, group IDs, preferred shells, home directories
are stored in the file at Jetc/passwd. We can see
them if we type:

cat /etc/passwd
We'll see a line like this:

john:x:1001:1001::/home/otherdirectory/:/bin/othersh
ell

The first number, 1001 is the ID number associated
with john's username. The next 1001 is the numeric

Access the labs: https:
https://kode.wiki/linux-labs 125

Kodekloud.com

ID of its primary group, also called "john" in this
case. Then we can see the home directory and the
preferred login shell.

useradd will automatically select a proper numeric
ID available, incrementally. For the first user, the ID
will be 1000, for the next one 1001, and so on. If we
want to manually select a different ID, we can use a
command such as:

sudo useradd --uid 1100 smith
or equivalent
sudo useradd -u 1100 smith

The user "smith" will have the numeric ID 1100, but
also the group called "smith" will get a numeric ID of
1100.

If we want to see what username and group owns
files or directories, we can do so with the usual

Is -l /home/

But if we want to see the numeric IDs of the user
and group owners, we can add the -n (numeric ID)
option:

Is -In /home/

Access the labs: https:
https://kode.wiki/linux-labs 125

Kodekloud.com

KODEKLOUD

Local User Accounts

$ id $ useradd --help

Usage: useradd [options] LOGIN
uuuuu dd -D

uid=1000(aaron) gid=1000(aaron) groups=1000(aaron),10(wheel),1005(family)
fined_u:unconfined_r:uncol
useradd -D [options]

context=uncon ul nfined_t:s@-s0:c0.c1023

$ whoami

$ sudo useradd --system sysacc
$ sudo userdel -r john

$ sudo userdel -r smith

It might also be useful sometimes to find out more
about the user we're currently logged in as. We can
see the username we're logged in as, plus groups
we're members of, alongside with the respective
IDs, with this command:

id
To just print out the username:
whoami

Up until now, we've created user accounts. But
there's another type we can create, called system

Access the labs: https:
https://kode.wiki/linux-labs 126

Kodekloud.com

accounts. To create a system account called
sysacc, we just add the --system option:

sudo useradd --system sysacc

The numeric IDs of system accounts are usually
numbers smaller than 1000. So, we might see an ID
like 976 or 978 for our sysacc account.

Why would we create these? User accounts are
intended for people. System accounts are intended
for programs. So, there will be no home directory
created since it's not needed. Usually, daemons use
system accounts. We might see something like a
database program running under a system account.

Now let's remove these users and their personal
files:

sudo userdel -r john
sudo userdel -r smith

If we ever forget the options for the useradd
command, we can get a quick reminder with:

useradd --help

Access the labs: https:
https://kode.wiki/linux-labs 126

Kodekloud.com

KODEKLOUD

Local User Accounts

$ sudo useradd john

$ sudo usermod --home /home/otherdirectory

$ sudo usermod -d /home/otherdirectory

$ sudo usermod --login jane == $ sudo usermod -1 jane

$ sudo usermod --shell /bin/othershell == ¢ sudo usermod -s /bin/othershell

Now let's say we create the user "john" again:

sudo useradd john

But later, we decide that we want to change some
details for this account. The command usermod
(user modify) is used for this purpose.

For example, if we want to change john's home
directory, we can use:

sudo usermod --home /home/otherdirectory/ --
move-home john

or equivalent

Access the labs: https:
https://kode.wiki/linux-labs

127

Kodekloud.com

sudo usermod -d /home/otherdirectory/ -m john

The --move-home option ensures that the old
directory will be moved or renamed so that John can
still access his old files. In our case, /home/john/
was renamed to /home/otherdirectory/.

To change the username, from john to jane we can
enter:

sudo usermod --login jane john

or equivalent

sudo usermod -l jane john

To change the user's login shell:

sudo usermod --shell /bin/othershell jane
or equivalent:

sudo usermod -s /bin/othershell jane

Access the labs: https:
https://kode.wiki/linux-labs 127

Kodekloud.com

KODEKLOUD

Local User Accounts

$ sudo usermod --lock jane == $ sudo usermod

$ sudo usermod --unlock jane $ sudo usermod

$ sudo usermod --expiredate 2021-12-10 == $ sudo usermod -e 2021-12-

Date format: YEAR-MONTH-DAY

$ sudo usermod --expiredate "" == ¢ sudo usermod -e ""

An often-used option with usermod is --lock (or equivalent option -L). This
effectively disables the account, but without deleting it. The user will not be
able to log in with his/her password anymore. However, they might still be able
to log in with an SSH key, if such a login method has been previously set up.
sudo usermod --lock jane

sudo usermod -L jane

To cancel this and unlock the account:

sudo usermod --unlock jane

or equivalent

sudo usermod -U jane

To set a date at which a user's account expires, we

Access the labs: https:
https://kode.wiki/linux-labs 128

Kodekloud.com

can use
sudo usermod --expiredate 2021-12-10 jane
or equivalent

sudo usermod -e 2021-12-10 jane

After expiration, they won't be able to log in and
need to contact a system administrator to re-enable
their account. If we want to immediately set an
account as expired, we can just choose a date that
is in the past.

This date is in the format YEAR-MONTH-DAY.

To remove the expiration date, just specify an empty
date. Use two quotes " with nothing inside.

sudo usermod --expiredate
sudo usermod -e "" jane

jane

Access the labs: https:
https://kode.wiki/linux-labs 128

Kodekloud.com

$ sudo chage --

$ sudo chage --

$ sudo chage --

$ sudo chage --

$ sudo chage --

Local User Accounts

lastday ©

lastday -1

maxdays 30

maxdays -1

list

$ sudo userdel -r jane

$ sudo groupdel john

KODEKLOUD

== $ sudo chage -

== $ sudo chage -d -

== $ sudo chage -

$ sudo chage -M -

$ sudo chage

chage = change age

We can also set an expiration date on the
password. Please keep in mind that this is not
the same as account expiration. Account
expiration completely disables user logins.
Password expiration forces the user to change their
password next time they log in. They can still use
the account.

If we want to immediately set password as expired,
we can enter this command:

sudo chage --lastday O jane

Access the labs: https:

https://kode.wiki/linux-labs

129

Kodekloud.com

or equivalent

sudo chage -d O jane

"chage" stands for "change age"

Next time Jane logs in, she'll have to change her
password.

If we want to cancel this, unexpire the password:

sudo chage --lastday -1 jane
sudo chage -d -1 jane

If we want to make sure that a user changes their
password once every 30 days, we can use this
command:

sudo chage --maxdays 30 jane
sudo chage -M 30 jane

If we want to make sure their password never
expires, we set maxdays to -1:

sudo chage --maxdays -1 jane
sudo chage -M -1 jane

To see when the account password expires:

sudo chage --list jane
sudo chage -l jane

Access the labs: https:
https://kode.wiki/linux-labs 129

Kodekloud.com

In case you followed along with this exercise, delete
the user called "jane" and the group called "john".

sudo userdel -r jane
sudo groupdel john

Access the labs: https:

https://kode.wiki/linux-labs 129

Kodekloud.com

KODEKLOUD

Configure User Resource Limits

Now, let's look at managing user resource limits in
Linux.

Access the labs: https:
https://kode.wiki/linux-labs 130

Kodekloud.com

KODEKLOUD

User Resource Limits

$ sudo vim /etc/security/limits.conf 1 3 <type> <item> <value>

soft core

hard rss
#@student hard nproc
#@faculty soft nproc
@faculty hard nproc
#ftp hard nproc
#@student - maxlogins

trinity hard nproc 10
@developers soft nproc 20

i soft cpu 5

When we have a lot of users logging in to the
system, we may want to impose limits on what
resources they can use. This way, we can ensure
that user A does not use 80% of the CPU leaving
very little to spare for the others.

To set such a limit, we can edit this file:
sudo vim /etc/security/limits.conf

We can see this is well-documented.

Let's move down until we see this:

Access the labs: https:
https://kode.wiki/linux-labs 131

Kodekloud.com

We can see that the syntax for setting a limit is
domain type item value
Let's break this down into easy-to-understand parts.

First, the domain; what can we specify here?
Usually, one of these three things:

1. Username. In this case, we just simply type the
name of the user, such as trinity.

Example limit for the trinity user:

trinity hard nproc 0

2. Group name. To set a limit for everyone in the
developers group, we just add @ in front of its
name. So we'd write @developers to set such a
group limit.

Example limit for the developers group:

@developers soft nproc 20

3. * will match all. Setting a limit for * basically says
"set this limit for every user on the system". So it's a
way to set a default limit. Why default? Because this
limit will only apply to every user that is not
mentioned in this list. A user limit overrides a * limit.

Access the labs: https:
https://kode.wiki/linux-labs 131

Kodekloud.com

For example, one * limit can specify that everyone
can only launch 10 processes. But then another
limit, for the user trinity, says she can launch 20
processes. In this case, the limit for everyone will be
10 (default), but for trinity, it will be set at 20.

Example default limit set with *:

* soft cpu 3

Access the labs: https:
https://kode.wiki/linux-labs 131

Kodekloud.com

KODEKLOUD

User Resource Limits

$ sudo vim /etc/security/limits.conf i<d0maln>§

#* core

#* rss
#@student nproc

@faculty nproc
#@faculty nproc
#ftp nproc
#@student maxlogins

trinity hard 30

trinity hard 20
trinity soft 10

trinity - 20

Next is type which can take three different values:

1.hard
2.soft
3.-

A hard limit cannot be overridden by a regular user.
If a hard limit says they can only run 30 processes,
they cannot go above that. It's basically, the top, the
max value of a resource someone can use.

trinity hard nproc 30

A soft limit on the other hand is different. Instead of

Access the labs: https:
https://kode.wiki/linux-labs 132

Kodekloud.com

a max value, this is more like the "startup limit", the
initial value for the limit when the user logs in. If a
user has a soft limit of 10 max processes and a hard
limit of 20, the following happens. When they log in,
the limit will be set to 10 processes. But if the user
has some temporary need to increase this, they can
raise it to 11, 12, 15 or 20 processes. This way they
can get a slight increase when absolutely required.
So, they can manually raise it to anything they
require, but never above the hard limit.

trinity hard nproc 20
trinity soft nproc 10

Last, we have the - sign. This specifies that this is
both a hard and a soft limit.

trinity - nproc 20

With this we're saying "Trinity should be able to run
20 processes at most. When she logs in, she should
be able to use up her entire allocation, without
needing to manually raise her limit."

Access the labs: https:
https://kode.wiki/linux-labs 132

Kodekloud.com

KODEKLOUD

User Resource Limits

#<domain> i <value>

$ sudo vim /etc/security/limits.conf #

$ man limits.conf #* core
LIMITS.CONF(5) Linux-PAM Manual #* rss

LIMITS.CONF(5)
#@student nproc
NAME #@faculty nproc
nproc
#ftp nproc
DESCRIPTION H
The pam_limits.so module applies ulimit #@StUdent maXIOQInS
limits, nice priority and
number of simultaneous login sessions limit to T
user login sessions. trlnlty hard 30
This description of the configuration file
syntax applies to the trinity hard
/etc/security/limits.conf file and *.conf
files in the
/etc/security/limits.d directory. tr|n|ty hard

limits.conf - configuration file for the
pam_limits module #@faCL”ty

The syntax of the lines is as follows:

<domain><type><item><value>

Next up, the item value. This decides what this limit
is for. We can have things such as:

trinity hard nproc 20

nproc sets the maximum number of processes that
can be open in a user session.

trinity hard fsize 1024

Access the labs: https:
https://kode.wiki/linux-labs 133

Kodekloud.com

fsize sets the maximum filesize that can be created
in this user session. The size is in KB so 1024 here
means that the maximum file size is 1024KB which
is exactly one Megabyte.

trinity hard cpu 1

cpu sets the limit for the CPU time. This is specified
in minutes. When a process uses 100% of a cpu
core for 1 second, it will use up 1 second of its
allocated time. If it uses 50% of one core for one
second, it will use up 0.5 seconds of its allocation.
Even if a process was open 3 hours ago, it might
have only used 2 seconds of CPU time.

If you want to see more stuff that can be limited just
consult the user manual for this limits.conf file:

man limits.conf

Access the labs: https:
https://kode.wiki/linux-labs 133

Kodekloud.com

KODEKLOUD

User Resource Limits

$ sudo vim /etc/security/limits.conf #@student - maxlogins

$ sudo -iu trinity trinity - nproc 3

$ ps | less

PID TTY TIME CMD
6314 pts/0 00:00:00 bash
6348 pts/0 00:00:00 ps
6349 pts/0 00:00:00 less

$ 1s -a | grep bash

bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.
bash: fork: retry: Resource temporarily unavailable.

Now let's test our knowledge and add a limit for our
user called trinity, to ensure she can open a
maximum number of three processes

Under this line

#@student - maxlogins 4

Access the labs: https:
https://kode.wiki/linux-labs 134

Kodekloud.com

Add this:

trinity - nproc 3

Make sure there's no # at the beginning of this line.
The vim editor might automatically add it when you
press ENTER to add a new line here. Make sure to
delete the preceding # otherwise the line would be

commented and have no effect. N OW,
let's save our file
and exit.

To log in as trinity, we can enter this command:

Access the labs: https:
https://kode.wiki/linux-labs 134

Kodekloud.com

sudo -iu trinity

-i instructs sudo to do a real log in
-u specifies the user we want to log in as

At this moment, only one process is permanently
running in her session, the Bash shell. So, we
should be able to run two more processes. Let's
launch ps and pipe the output to the less pager.

ps | less

We can see it works and it got us to running three
processes, the max limit. Now what would happen if
we'd try to launch the fourth? Let's press q to quit
the less pager and then try the following:

Access the labs: https:
https://kode.wiki/linux-labs 134

Kodekloud.com

Is -a | grep bash | less

This would try to launch three new processes, Is,
grep and less, plus Bash already running, would
total 4 processes:

And we'll see this failing, as expected. We cannot
run more than three processes:

Access the labs: https:
https://kode.wiki/linux-labs 134

Kodekloud.com

$ logout

$ ulimit -a
core file size
data s i

User Resource Limits

(blocks, -c) @
(kbytes, -d) unlimited
(-e) 0
(blocks, -f) unlimited

(-i) 14722
(kbytes, -1) 64
(kbytes, -m) unlimited

(-n) 1024

(512 bytes, -p) 8

a
virtual memory
file locks

$ ulimit -u 5000

Let's type

logout

es, -q) 819200

(kbytes, -s
(secon

to exit from trinity's session.

KODEKLOUD

If we want to see the limits for our current session,
we can type:

ulimit -a

We have small hints between parentheses. For

example, we can see "-u" displayed for max user

processes. This means that we could type

Access the labs: https:
https://kode.wiki/linux-labs

135

Kodekloud.com

ulimit -u 5000

to lower our limit to 5000 processes. By default, a
user can only lower his limits, not raise them. The
exception is when there are hard and soft limits. In
that case, the user can raise his/her limit all the way
up to the hard value, but only once. After the limit is
raised with a ulimit command, the next command
can only lower it. It cannot be raised the second
time, even if the hard limit would allow it.

Access the labs: https:
https://kode.wiki/linux-labs 135

Kodekloud.com

KODEKLOUD

Manage User Privileges

Now, let's examine how to manage user privileges in
Linux.

Access the labs: https:
https://kode.wiki/linux-labs 136

Kodekloud.com

KODEKLOUD

Manage User Privileges

$ groups

aaron family wheel

$ sudo gpasswd -a trinity wheel

trinity

Every time we had to make some important
changes to the system, we used "sudo" in our
commands. That's because only the root user, also
called "superuser" can make changes to important
areas of the operating system. Whenever we put
"sudo" in front of a command, that command runs
as if the root user executed it. So how come our
user is allowed to use sudo?

If we type this command

groups

Access the labs: https:
https://kode.wiki/linux-labs 137

Kodekloud.com

we'll see our user is part of the "wheel" group.

Whoever is part of this group is automatically
allowed to use sudo.

This means that the easiest way to give another
user sudo privileges is to add them to the wheel
group. To add our user "trinity" to the "wheel" group:

sudo gpasswd -a trinity wheel

And that's it. Now this user can get administrator
privileges whenever they want. But this gives them
power to do anything they want on our system.
What if we want more fine-tuned control? Then we
could take a different approach.

Access the labs: https:
https://kode.wiki/linux-labs 137

Kodekloud.com

KODEKLOUD

Manage User Privileges

$ sudo gpasswd -d trinity wheel

$ sudo visudo

user/group host=(run_as_user)
command_list

There is a special file at /etc/sudoers that defines
who can use sudo and under what conditions, what
commands they can run, and so on. But we should
not edit this file directly. We use a utility called
visudo. This utility can check if our edits are correct
to help us avoid mistakes in this file.

First, let's remove trinity from the wheel group, to
make sure she can't use sudo anymore, and
instead, define a different sudo policy for her, later.

sudo gpasswd -d trinity wheel

Access the labs: https:
https://kode.wiki/linux-labs 138

Kodekloud.com

To start editing the /etc/sudoers file we run:

sudo visudo

This opens in the vim editor. The file is thoroughly
commented, but we're not interested in the first few
parts. So, let's navigate to the end. We'll notice this
line

Allows people in group wheel to run all
commands
%wheel ALL=(ALL) ALL

Now we see why any user added to the "wheel"
group can run any command with sudo.

Let's break down this line into 4 different parts and
analyze what they do:

1.%wheel 2.ALL=3.(ALL) 4 ALL

1. is the user/group. Here we define who this policy
is for.

2. is the host. Here we could specify that these
rules only apply if our server's hostname or IP
address has a specific value. Not useful for our
purposes, so we'll just type ALL for this host field.

3. is the run_as field. Here, we could type a list of

Access the labs: https:
https://kode.wiki/linux-labs 138

Kodekloud.com

usernames. Normally, "sudo Is" will run the "Is"
command as root. Because that's what sudo does, it
runs the command after it as a different user. But
sudo can also be used so that "aaron" can run
commands as "jane" or vice versa. We'll see more
about this later. So, if we list "aaron, jane" in this
"run_as" field, then sudo can only be used to run
commands as the user "aaron" or "jane", but not
"root".

4. is the list of commands that can be executed with
sudo.

So we could say the syntax for a policy defined in
the sudoers file is:

user/group host=(run_as_user) command_list

Access the labs: https:
https://kode.wiki/linux-labs 138

Kodekloud.com

Manage User Privileges

$ sudo -u trinity 1s trinity ALL=(ALL)
Desktop Documents Downloads Music Pictures
developers ALL=(ALL)

$ SUdO 15 T y ALL=(aaron, john
trinity ALL=ALL

$ sudo stat /bin

inity ALL=(ALL)

$ sudo echo "Test passed?"

Sorry, user trinity is not allowed to execute '/bin/echo Test
passed?’ as root on LFCS-CentOS.

ALL= /bin/ls,

%wheel ALL=(ALL) NOPA

trinity ALL= NOPASSWD:ALL

Now let's go through some examples. To define a
policy for our trinity user and let her run any sudo

command;

trinity ALL=(ALL) ALL

To specify a policy for all users in the developers

group:
%developers ALL=(ALL) ALL

We mentioned sudo lets us run commands as root,
but also as non-root, regular users. For example, to
run the Is /home/trinity/ command as the user

Access the labs: https:
https://kode.wiki/linux-labs

139

Kodekloud.com

called trinity we could write:
sudo -u trinity Is /home/trinity/
After -u we specify the username we want to run as.

If this third field is (ALL) then this policy allows
someone to run sudo commands as any user. But if
we'd want trinity to only be able to run sudo
commands as the users aaron or john, we would
write:

trinity ALL=(alex, john) ALL

Also, this is wrapped in () parentheses which hints
us that the field is optional. So, a line like:

trinity ALL= ALL
Is also valid.

We mentioned that in the fourth field we can specify
a list of commands. With our previous entries, the
user or group granted sudo privileges could execute
any command. But we could limit them like this:

trinity ALL=(ALL) /bin/ls, /bin/stat
Now trinity could run commands such as:

sudo Is /

Access the labs: https:
https://kode.wiki/linux-labs 139

Kodekloud.com

sudo stat /bin/

Only "Is" and "stat" commands will work. If trinity
tries a command such as:

sudo echo "Test passed?”
she will get this error:

Sorry, user trinity is not allowed to execute
'/bin/echo Test passed?' as root on centos-vm.

And since we specified the third field is optional, this
line

trinity ALL=(ALL) /bin/ls, /bin/stat
could also be written like this:
trinity ALL= /bin/ls, /bin/stat

We know that the first time we run a sudo command
in a session, it asks for our current user's password.
In our sudoers file, we see a hint about how we
could get rid of this requirement.

So, we could use the example in the comments:

%wheel ALL=(ALL) NOPASSWD: ALL

And figure out how to apply this for our user trinity. If
we want her to be able to run sudo commands,

Access the labs: https:
https://kode.wiki/linux-labs 139

Kodekloud.com

without providing her password, we could write this
line in the sudoers file:

trinity ALL=(ALL) NOPASSWD: ALL

Access the labs: https:
https://kode.wiki/linux-labs 139

Kodekloud.com

KODEKLOUD

Manage Access to

the Root Account

Now, let's examine how to manage access to the
Root account in Linux.

Access the labs: https:
https://kode.wiki/linux-labs 140

Kodekloud.com

KODEKLOUD

Manage Access to the Root Account

$ sudo 1ls /root/

anaconda-ks.cfg initial-setup-ks.cfg

$ sudo --login == $ sudo -i

$ logout

$su-=9%su-1 =9 su --login

We already saw one method to temporarily become
root whenever needed. When we run a command
such as

sudo Is /root/

it's basically the same as if the root user would
execute "Is /root/".

But what if we want to log in as root? For a user with
sudo access, we can enter this command:

sudo --login

Access the labs: https:
https://kode.wiki/linux-labs 141

Kodekloud.com

or equivalent
sudo -i

And that's it, we're logged in as root. To exit from
root's session, we'll type:

logout

If the user does not have sudo privileges, but knows
root's password, they can use:

Su -
su -l
su --login

All these commands do the same thing: log you in
as root.

Access the labs: https:
https://kode.wiki/linux-labs 141

Kodekloud.com

Manage Access to the Root Account

$ sudo --login
$

$ sudo passwd root

$ sudo passwd --unlock root == $ sudo passwd -u root

$ su -

$ sudo passwd --lock root == $ sudo passwd -1 root

Some systems might have the root account locked.
This does not mean that we cannot use the root
user. It just means that we cannot do a regular log
in, with a password. When root is locked, we can

still use
sudo --login
to log in as root. But we cannot use

Su -

as that would ask for root's password, which is

currently locked.

Access the labs: https:
https://kode.wiki/linux-labs

142

Kodekloud.com

If we want to allow people to log in as root, with a
password, we have two options:

1. If root never had a password set, we just choose
a new password for it:

sudo passwd root

2. If root had a password set in the past, but then,
the account was locked for some reason, we can
unlock it with:

sudo passwd --unlock root
sudo passwd -u root

After one of these steps, we can run
Su -
and type the password for root to log in.

Of course, we could also find ourselves in the
reverse scenario. Imagine this: currently, people can
log in as "root". But we figure that this is a bit
insecure. So, we can lock password-based logins to
the root account with:

sudo passwd --lock root
sudo passwd -l root

Access the labs: https:
https://kode.wiki/linux-labs 142

Kodekloud.com

Other logins might still be possible if they were
previously set up. For example, if an administrator
has set up logins with an SSH private key, they'll still
be able to log in even if the root account is locked.

Make sure to only lock root if your user can use
sudo commands. With no root login and no sudo,
you'll find yourself in the situation of not being able
to become root at all, effectively locking yourself out,
not able to change important system settings
anymore.

Access the labs: https:
https://kode.wiki/linux-labs 142

Kodekloud.com

KODEKLOUD

Access Labs

https://kode.wiki/linux-labs

Access the labs associated with this course using
this link: https://kode.wiki/linux-labs

Access the labs: https:
https://kode.wiki/linux-labs 143

Kodekloud.com

)

IKodelKloud

Access the labs: https:
https://kode.wiki/linux-labs 144

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: --help
	Slide 20: --help
	Slide 21: Manual Pages With man Command
	Slide 22: Manual Pages With man Command
	Slide 23: Searching For Commands - apropos
	Slide 24: Searching For Commands - apropos
	Slide 25
	Slide 26: TAB: Suggest and Autocomplete
	Slide 27
	Slide 28
	Slide 29: Listing Files and Directories
	Slide 30: Listing Files and Directories
	Slide 31: Listing Files and Directories
	Slide 32: Listing Files and Directories
	Slide 33: Filesystem Tree
	Slide 34: Filesystem Tree
	Slide 35: Absolute Path
	Slide 36: Current / Working Directory
	Slide 37: Current / Working Directory
	Slide 38: Relative Path
	Slide 39: Current / Working Directory
	Slide 40: Creating Files
	Slide 41: Creating Directories
	Slide 42: Copying Files
	Slide 43: Copying Directories
	Slide 44: Copying Directories
	Slide 45: Moving Files
	Slide 46: Moving Files
	Slide 47: Deleting Files and Directories
	Slide 48
	Slide 49
	Slide 50: Inodes
	Slide 51: Hard Links
	Slide 52: Hard Links
	Slide 53: Limitations and Considerations
	Slide 54
	Slide 55
	Slide 56: Soft Links
	Slide 57: Soft Links
	Slide 58: Soft Links
	Slide 59
	Slide 60
	Slide 61: Owners and Groups
	Slide 62: File and Directory Permissions
	Slide 63: File and Directory Permissions
	Slide 64: Directory Permissions
	Slide 65: Evaluating Permissions
	Slide 66: Adding Permissions
	Slide 67: Removing Permissions
	Slide 68: Setting Exact Permissions
	Slide 69: Chaining Permissions
	Slide 70: Octal Permissions
	Slide 71: Octal Permissions
	Slide 72: Octal Permissions
	Slide 73: Octal Permissions
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: find
	Slide 79: Search Parameters - Name
	Slide 80: Search Parameters – Modified Time
	Slide 81: Search Parameters – File Size
	Slide 82: Search Expressions
	Slide 83: Search Expressions
	Slide 84: Search Expressions
	Slide 85: Search Expressions
	Slide 86
	Slide 87
	Slide 88: Regular Expressions
	Slide 89: Regex Operators
	Slide 90: ^ “The line begins with”
	Slide 91: ^ “The line begins with”
	Slide 92: $ “The line ends with”
	Slide 93: . “Match any ONE character”
	Slide 94: . “Match any ONE character”
	Slide 95: Special Characters
	Slide 96: \: Escaping For Special Characters
	Slide 97: *: Match The Previous Element 0 Or More Times
	Slide 98: *: Match The Previous Element 0 Or More Times
	Slide 99: +: Match The Previous Element 1 Or More Times
	Slide 100: +: Match The Previous Element 1 Or More Times
	Slide 101: +: Match The Previous Element 1 Or More Times
	Slide 102: +: Match The Previous Element 1 Or More Times
	Slide 103
	Slide 104: Extended Regular Expressions
	Slide 105: {}: Previous Element Can Exist “this many” Times
	Slide 106: {}: Previous Element Can Exist “this many” Times
	Slide 107: {}: Previous Element Can Exist “this many” Times
	Slide 108: ?: Make The Previous Element Optional
	Slide 109: {}: Previous Element Can Exist “this many” Times
	Slide 110: |: Match One Thing Or The Other
	Slide 111: |: Match One Thing Or The Other
	Slide 112: []: Ranges Or Sets
	Slide 113: []: Ranges Or Sets
	Slide 114: []: Ranges Or Sets
	Slide 115: []: Ranges Or Sets
	Slide 116: []: Ranges Or Sets
	Slide 117: (): Subexpressions
	Slide 118: (): Subexpressions
	Slide 119: (): Subexpressions
	Slide 120: [^]: Negated Ranges Or Sets
	Slide 121: [^]: Negated Ranges Or Sets
	Slide 122
	Slide 123: Local User Accounts
	Slide 124: Local User Accounts
	Slide 125: Local User Accounts
	Slide 126: Local User Accounts
	Slide 127: Local User Accounts
	Slide 128: Local User Accounts
	Slide 129: Local User Accounts
	Slide 130
	Slide 131: User Resource Limits
	Slide 132: User Resource Limits
	Slide 133: User Resource Limits
	Slide 134: User Resource Limits
	Slide 135: User Resource Limits
	Slide 136
	Slide 137: Manage User Privileges
	Slide 138: Manage User Privileges
	Slide 139: Manage User Privileges
	Slide 140
	Slide 141: Manage Access to the Root Account
	Slide 142: Manage Access to the Root Account
	Slide 143
	Slide 144

