
Introduction to Vault

What is Vault?

What is Vault?

• Manage Secrets and Protect Sensitive Data
• Provides a Single Source of Secrets for both Humans and Machines
• Provides Complete Lifecycle Management for Secrets

• Eliminates secret sprawl
• Securely store any secret
• Provide governance for access to secrets

• What is a Secret?
• Anything your organization deems sensitive:

• Usernames and passwords
• API keys

• Certificates
• Encryption Keys

How Vault Works

Hotel Atlantis Paradise Island – The Bahamas

Employees

How Vault Works
Vault Interfaces

API

CLI

UI

Machines
Humans

Machines

Humans

Vault Authentication

Can I
validate your
ID, please?

Vault Interfaces
Authentication

Thank you!

Vault Interfaces

Here is your
room key!

Room

Gym

VIP Lounge

Spa

VALID FOR 3 DAYS

Vault Interfaces

We present our key.
We don't authenticate again

Vault Interfaces
Token Generation

Authentication

Username & Password
RoleID & Secret ID

TLS Certificate
Integrated Cloud Creds

Generate Token

Vault Path(s)
Read/Write/Delete/List

VALID FOR 4 HOURS
(TTL)

Vault Interfaces
Token Usage

Retrieve Data from a Path

kv/apps/secret

Return Requested Data

username: v_data_3j38d3
password: 409fls2094()kj20d

 Token is Valid
 Token is not Expired
 Token has Permission

We present our token.
We don't authenticate again

Why Organizations Choose Vault

AWS Azure GCP
</> </> </>

</>

AWS IAM Azure AD Google
Cloud IAM

Why Organizations Choose Vault

AWS Azure GCP

</>

</> </> </>

</>

Benefits of HashiCorp Vault

Store Long-Lived,
Static Secrets

Dynamically Generate
Secrets, upon Request

Identity-based Access
Across different Clouds and

Systems

Provide Encryption
as a Service

Fully-Featured API

Act as a Root or Intermediate
Certificate Authority

Use Cases

Centralize The
Storage Of Secrets

Migrate to Dynamically
Generated Secrets

Secure Data with a centralized
workflow for Encryption Operations

Automate the Generation
of X.509 Certificates

Migrate to Identity-
Based Access

Use Case – Storage of Secrets

CHEF
Databags

Jenkins
Credentials

AWS Secrets
Manager

Azure
Key Vault

Centralize the storage of secrets
across the organization into a

consolidated platform

KEY/VALUE

Use Case – Migrate to Dynamic Credentials

Static Credential

• Validate 24/7/365
• Long-Lived
• Manual Password Rotation
• Frequently Shared Across the Team
• Reused Across Systems
• Susceptible to Being Added to Code/Repo
• Often Highly Privileged
• Manually Created by Human

• Short-Lived
• Follows Principal of Least Privilege
• Automatically Revocated (Based on Lease)
• Each System Can Retrieve Unique Credentials
• Programmatically Retrieved
• No Human Interaction

Dynamic Credential

Use Case – Encrypt Data

DATABASE

FILE SYSTEM CLOUD SERVICE

KEY MANAGEMENT

Secure Data with a centralized
workflow for Encryption Options

• Transit
• Key Mgmt

• KMIP
• Transform

Secrets Engines

Use Case – Automate X.509 Certificates

GENERATE A CSR

ENTER TICKET FOR CERT CREATION

SUBMIT CSR TO SIGNING CA

RETRIEVE THE CERTIFICATE & KEY

CERTIFICATE IS RETURNED (TICKET CLOSED)

ENGINEER UPLOADS CERTIFICATE AND PRIVATE KEY

RENEWAL FOLLOWS THE SAME PROCESS

BEFORE VAULT USING VAULT

Certificate
Request Certificate & Key

Returned

PKI

APP

Use Case – Migrate to Identity-Based Access

IP: 10.5.21.58

User: svc_web_app
Pass: ef34905ngdle092

I'm AWS instance
i-7nc2084cje092 using

the web role

Cool. I trust the web
role and you get access

to these three paths

I'm AWS instance
i-vcnd93n5jkf98 using

the web roleI'm AWS instance
i-7mvj2874nnd89 using

the web role

• Quickly Scale Up and Down
• Reduce/Eliminate Ticket-based Access
• Increase Time to Value

Vault – Compare Versions

AWS, Azure, & GCP Auto Unseal

Encryption as a Service

Key Rolling

Vault Agent

Access Control Policies

ACL Templates

Dynamic Secrets

Init & Unseal Workflow

FIPS 140-2 & Seal Wrap

Sentinel

HSM Auto-Unseal

Read Replicas

MFA

Namespaces

Disaster Recovery

Replication

Self-Hosted and Managed

All Enterprise Features

Push Button Deployment

Scalable

Pay by the Hour

Fully Managed Solution

Hosted by HashiCorp

Reduce Admin Burden

HashiCorp Hosted & Managed

Dev or Prod Options

Vault – Open Source

Includes:
• Incredible number of features and integrations
• Local high-availability by way of clustering
• Almost all secrets engines and auth methods
• Can easily integrate with any application using fully-featured API

Does Not Include:
• No Replication capabilities = single datacenter/cloud deployment
• Does not include access to Enterprise integrations (MFA, HSM, Automated Backups)
• Limited Scalability

Vault – Enterprise

Includes:
• Access to all* features and functions Vault offers
• Replication capabilities to other Vault clusters across datacenters/clouds
• All secrets engines and auth methods
• Can easily integrate with any application using fully-featured API
• Namespaces for multi-tenancy solution
• Policy as Code using Sentinel
• Easily scale local reads using Performance Standbys
• Access to the Raft/Consul snapshot agent for automated disaster recovery solution

Does Not Include:
• Self-Managed - Not hosted or managed by HashiCorp

Vault – Enterprise

Feature Enterprise Platform Enterprise Modules

Namespaces ✔ ✔

Disaster Recovery ✔ ✔

Replication ✔
Path Filters ✔

Read Replicas ✔

Control Groups ✔

HSM Integration ✔

Multi-factor Authentication ✔

Sentinel Integration ✔

KMIP ✔

Transform ✔

Multi-Datacenter & Scale

Governance & Policy

Advanced Data Protection

*Based on Current Version - Subject to Change hashicorp.com/products/vault/pricing

Vault on HashiCorp Cloud Platform (HCP)

Includes:
• All features of Vault Enterprise
• Fully managed solution
• Click button deployment
• HashiCorp team of Vault experts manages and upgrades your cluster(s)

cloud.hashicorp.com

Peering
Connection

HashiCorp Managed Customer Managed

Vault Cluster Vault Clients

Vault Components

Storage
Backends

Authentication
Methods

Secrets
Engines

Audit
Devices

Storage Backends

• Configures location for storage of Vault data

• Storage is defined in the main Vault configuration file with desired parameters

• All data is encrypted in transit (TLS) and at-rest using AES256

• Not all storage backends are created equal:

• Some support high availability

• Others have better tools for management & data protection

• There is only one storage backend per Vault cluster!

More details later in this section

Secrets Engines

• Vault components that are responsible for managing secrets for your
organization

• Secrets Engines can store, generate, or encrypt data

• Many secrets engines connect to other services to generate dynamic credentials
on-demand

• Many secrets engines can be enabled and used as needed

• Even multiple secrets engines of the same type

• Secret engines are enabled and isolated at a “path”

• All interactions are done directly with the “path” itself

More details in Objective 5

Auth Methods

• Vault components that perform authentication and manage identities

• Responsible for assigning identity and policies to a user

• Multiple authentication methods can be enabled depending on your use case

• Auth methods can be differentiated by human vs. system methods

• Once authenticated, Vault will issue a client token used to make all subsequent Vault
requests (read/write)

• The fundamental goal of all auth methods is to obtain a token

• Each token has an associated policy (or policies) and a TTL

• Default authentication method for a new Vault deployment = tokens

More details in Objective 1

Audit Devices

• Keeps detailed log of all requests and responses to Vault

• Audit log is formatted using JSON

• Sensitive information is hashed before logging

• Can (and should) have more than one audit device enabled

• Vault requires at least one audit device to write the log before completing
the Vault request – if enabled

• Prioritizes safety over availability

More details later in this section

Vault Architecture

HTTP/S API

STORAGE BACKEND

Token Store

Rollback
Manager

Policy Store

Expiration
Manager

Core

Path Routing

System
Backend

Secrets
Engines

Auth
Method

Audit
Broker

Audit
Device

Audit
Device

Ba
rr

ie
r Barrier

Barrier

Barrier

</>

API Interaction

Encrypted Storage

Vault Paths

• Everything in Vault is path-based

• The path prefix tells Vault which component a request should be routed

• Secret engines, auth methods, and audit devices are “mounted” at a specified
path

• Often referred to as a 'mount'

• Paths available are dependent on the features enabled in Vault, such as Auth
Methods and Secrets Engines

• System backend is a default backend in Vault which is mounted at the /sys
endpoint.

Vault Paths

• Vault components can be enabled at ANY path you'd like using the –path flag

• Each component does have a default path you can use as well

• Vault has a few System Reserved Path which you cannot use or remove:

Path Mount Point Description

auth/ Endpoint for auth method configuration

cubbyhole/ Endpoint used by the Cubbyhole secrets engine

identity/ Endpoint for configuring Vault identity (entities and groups)

secret/ Endpoint used by Key/Value v2 secrets engine if running in dev mode

sys/ System endpoint for configuring Vault

How Does Vault Protect My Data?

Vault DataEncryption KeyVault Node Master Key

Stored In Memory

Protects Protects

How Does Vault Protect My Data?

Master Key – used to decrypt the master key

• Created during Vault initialization or during a rekey operation

• Never written to storage when using traditional unseal mechanism

• Written to core/master (storage backend) when using Auto Unseal

Encryption Key – used to encrypt/decrypt data written to storage backend

• Encrypted by the Master Key

• Stored alongside the data in a keyring on the storage backend

• Can be easily rotated (manual operation)

Seal and Unseal

• Vault starts in a sealed state, meaning it knows where to access the data, and
how, but can’t decrypt it

• Almost no operations are possible when Vault is in a sealed state (only status
check and unsealing are possible)

• Unsealing Vault means that a node can reconstruct the master key in order to
decrypt the encryption key, and ultimately and read the data

• After unsealing, the encryption key is stored in memory

Seal and Unseal

• Sealing Vault means Vault “throws away” the encryption key and requires
another unseal to perform any further operations

• Vault will start in a sealed state – you can also manually seal it via UI, CLI, or API

• When would I seal Vault?

• Key shards are inadvertently exposed

• Detection of a compromise or network intrusion

• Spyware/malware on the Vault nodes

Seal and Unseal - Options

Key Sharding
(Sharmir)

Cloud
Auto Unseal

Transit
Auto Unseal

Master Key

KMS Transit

Unsealing with Key Shards

Shamir’s Secret Sharing Algorithm

Vault DataEncryption KeyMaster Key

Protects Protects

Key Shards
(Unseal Keys)

Unsealing with Key Shards

Trusted Employees

Terminal

Unsealing with Key Shards

Key

Seal Type
Sealed
Total Shares
Threshold
Unseal Progress 0/3

Value

shamir
true
5
3

vault status

Unseal Progress 1/3Unseal Progress 2/3

Value

shamir
false
5
3

$

Version 1.7.0
Storage Type consul
Cluster Name vault-cluster
Cluster ID xxx-xxx-xxx-xxx
HA Enabled true

Unsealing with Key Shards

• Default option for unsealing – no configuration needed

• No single person should have access to all key shards

• Ideally, each key shard should be stored by a different employee

• When initializing Vault, you can request the individual shards to be encrypted
with different PGP keys

• When unsealing Vault, you will need an equal number of employees to provide
their key which is equal to the threshold

• Key shards should not be stored online and should be highly protected – ideally
stored encrypted

Unsealing with Auto Unseal

Vault DataEncryption KeyMaster Key

Protects Protects

Vault Node

Stored In Memory

Stored on Storage Backend
(Encrypted by Cloud KMS Key)

Unsealing with Auto Unseal

• Auto Unseal uses a cloud or on-premises HSM to decrypt the Master key

• Vault configuration file identifies the particular key to use for decryption

• Cloud Auto Unseal automatically unseals Vault upon service or node restart
without additional intervention

• Available in both open source and Enterprise editions

• Formally an Enterprise-only feature until Vault 1.0

Unsealing with Auto Unseal

storage "consul" {
address = "127.0.0.1:8500"
path = "vault/"

}
listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"

}
seal "awskms" {

region = "REGION"
kms_key_id = "KMSKEY"

}
api_addr = "https://IPADDRESS:8200"
ui = true

seal “awskms” – identifies the type of seal mechanism for the cluster

region = “REGION” – identifies the region where the KMS key resides

kms_key_id = “KMSKEY” – identifies the actual KMS key in AWS

Deep dive included in my
HashiCorp Vault:

The Advanced Course

Unsealing with Transit Auto Unseal

Vault DataEncryption KeyMaster Key

Protects Protects

Vault Cluster
(Running Transit)

Encryption
Key

Unsealing with Transit Auto Unseal

Vault Cluster
(Running Transit)

Other Vault Clusters
In the Organization

Unsealing with Transit Auto Unseal

• Uses the Transit Secret Engine of a different Vault cluster

• The Transit Secret Engine may be configured in a Namespace

• The Transit Unseal supports key rotation

• Available in open source and Enterprise

• The core Vault cluster must be highly-available

seal "transit" {
address = "https://vault.example.com:8200"
token = "s.Qf1s5zigZ4OX6akYjQXJC1jY"
disable_renewal = "false"

// Key configuration
key_name = "transit_key_name"
mount_path = "transit/"
namespace = "ns1/"

// TLS Configuration
tls_ca_cert = "/etc/vault/ca_cert.pem"
tls_client_cert = "/etc/vault/client_cert.pem"
tls_client_key = "/etc/vault/ca_cert.pem"
tls_server_name = "vault"
tls_skip_verify = "false"

}

Unsealing with Transit Auto Unseal

address = Vault cluster running Transit

token = ACL token to use if enabled

key_name = transit key used for encryption/decryption

mount_path = mount path to the transit secret engine

namespace = namespace path to the transit secret engine

Pros and Cons of Unseal Options

Keys Shards

 Simplest form of unsealing

 Works on any platform

 Configuration options make it
flexible

Auto Unseal

 Automatic unsealing of Vault

 Set and forget

 Integration benefits for
running on same platform

Transit Unseal

 Automatic unsealing of Vault

 Set and forget

 Platform agnostic

 Useful when running many
Vault clusters across
clouds/data centers

Pros and Cons of Unseal Options

Keys Shards

ꓫ Introduces risk for storing
keys

ꓫ Requires manual
intervention for unsealing

ꓫ Keys can be inadvertently
shared and require
rotation

Auto Unseal

ꓫ Regional requirements for
cloud HSMs

ꓫ Cloud/vendor lock-in

Transit Unseal

ꓫ Requires a centralized Vault
cluster

ꓫ Centralized Vault cluster
needs the highest level of
uptime

Vault Initialization

• Initializing Vault prepares the backend storage to receive data

• Only need to initialize a Vault cluster one time via a single node

• Vault initialization is when Vault creates the master key and key shares

• Options to define thresholds, key shares, recovery keys, and encryption

• Vault initialization is also where the initial root token is generated and returned
to the user

• Vault can be initialized via CLI, API, or UI
$ vault operator init <options>

Configuration File

• Vault servers are configured using a file

• Written in HCL or JSON

• The configuration file includes different stanzas and parameters to define a
variety of configuration options

• Configuration file is specified when starting Vault using the – config flag

• Usually stored somewhere in /etc (doesn’t have to be)

• I store mine at /etc/vault.d/vault.hcl

$ vault server –config <location>

$ vault server –config /etc/vault.d/vault.hcl

Configuration File

• Storage Backend
• Listener(s) and Port
• TLS certificate
• Seal Type
• Cluster Name
• Log Level
• UI
• Cluster IP and Port

What’s Configured in the File? What’s Not?

• Secrets Engines
• Authentication Methods
• Audit Devices
• Policies
• Entities & Groups

Configuration File

stanza1 “option” {
<parameter1> = <value1>
<parameter2> = <value2>
<parameter3> = <value3>

}

stanza2 “option” {
<parameter1> = <value1>
<parameter2> = <value2>

}

<parameter1> = <value>
<parameter2> = <value>
<parameter3> = <value>

listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"
tls_disable = "true"
}

seal "awskms" {
region = "<region>"
kms_key_id = "<kms_key>"

}

api_addr = "https://IPADDRESS:8200"
ui = true
cluster_name = “vault_cluster”

Configuration File

Available Stanzas:
– seal – seal type
– listener – addresses/ports for Vault
– storage – storage backend
– telemetry – where to publish metrics to upstream systems

Example of Parameters:
– cluster_name – identifier for the cluster – Vault will auto-generate name if omitted
– log_level – specifies the log level to use – Trace, Debug, Error, Warn, Info
– ui – enables the built-in web UI
– api_addr – address to advertise to other Vault servers for client redirection
– cluster_addr – address to advertise to other Vault servers for request forwarding

Configuration File - Example
storage "consul" {
address = "127.0.0.1:8500"
path = "vault/"
token = "1a2b3c4d-1234-abdc-1234-1a2b3c4d5e6a"

}
listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"
tls_disable = 0
tls_cert_file = "/etc/vault.d/client.pem"
tls_key_file = "/etc/vault.d/cert.key"
tls_disable_client_certs = "true"
}
seal "awskms" {
region = "us-east-1"
kms_key_id = "12345678-abcd-1234-abcd-123456789101",
endpoint = "example.kms.us-east-1.vpce.amazonaws.com"

}
api_addr = "https://vault-us-east-1.example.com:8200"
cluster_addr = " https://node-a-us-east-1.example.com:8201"
cluster_name = "vault-prod-us-east-1"
ui = true
log_level = "INFO"

https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/vault.hcl

Storage Stanza

Listener Stanza

Seal Stanza

Additional Parameters

Storage Backend

• Configures location for storage of Vault data

• Open-source users can choose a storage backend based on their
preferences (for the most part)

• Enterprise Vault Clusters should use HashiCorp Consul or Integrated Storage

• Everything else is “community supported” and can be used for open-
source

Storage Backend

Aerospike

Azure

Cassandra

CockroachDB

Consul

CouchDB

Etcd

Filesystem

FoundationDB

Google Cloud Spanner

Google Cloud Storage

In-Memory

Manta

MSSQL

MySQL

OCI Object Storage

PostgreSQL

Integrated Storage (Raft)

Amazon S3

Swift

Zookeeper

*Updated based on Vault 1.7

Storage Backend

Vault Node Vault NodeVault Node

Storage Backend

Vault Cluster # 1

Vault Node Vault NodeVault Node

Storage Backend

Vault Cluster #2

Replication

RAFT

There is only one storage
backend per Vault cluster!

Choosing a Storage Backend

In-Memory

Azure Cassandra CockroachDB

CouchDB

No

No

No No

Yes

Yes

Yes Yes

Manta MSSQL

S3 Swift

Filesystem DynamoDB Etcd FoundationDB

Google Cloud
Spanner

Google Cloud
Storage MySQL

PostgreSQL Zookeeper

Consul

Raft

Credit: @GreenReedTech

Production?

HA Support?

HashiCorp
Supported?

HashiCorp
Supported?

Storage Backend - Configuration

Editor

storage "consul" {

address = "127.0.0.1:8500"

path = "vault/"

token = "1a2b3c4d-1234-abdc-1234-1a2b3c4d5e6a"

}

Editor

storage "raft" {

path = "/opt/vault/data"

node_id = "node-a-us-east-1.example.com"

retry_join {

auto_join = "provider=aws region=us-east-1 tag_key=vault tag_value=us-east-1"

}

}

Integrated
Storage

Type of Storage Backend

IP/Port of Consul Agent

Path in Consul K/V to store Vault Data

Consul ACL Token

Type of Storage Backend

Local Path to Storage
Replicated Data

Name/ID of Node

Cluster Join options

Audit Device

• Keep a detailed log of all authenticated requests and responses to Vault

• Audit log is formatted using JSON

• Sensitive information is hashed with a salt using HMAC-SHA256 to ensure
secrets and tokens aren’t ever in plain text

• Log files should be protected as a user with permission can still check the
value of those secrets via the /sts/audit-hash API and compare to the log
file

$ vault audit enable file file_path=/var/log/vault_audit_log.log

Audit Device

File

Syslog

Socket

• writes to a file – appends logs to the file
• does not assist with log rotation
• use fluentd or similar tool to send to collector

• writes audit logs to a syslog
• sends to a local agent only

• writes to a tcp, udp, or unix socket
• unreliable [due to underlying protocol]
• should be used where strong guarantees are required

Audit Device

• Can and should have more than one audit device enabled

• If there are any audit devices enabled, Vault requires that it can write to the
log before completing the client request.

• Prioritizes safety over availability

• If Vault cannot write to a persistent log, it will stop responding to client
requests – which means Vault is down!

!
Vault requires at least one audit device to write the log
before completing the Vault request – if enabled

Vault Interfaces

• Three interfaces to interact with Vault: UI, CLI, and HTTP API

• Not all Vault features are available via UI and CLI but all features can be
accessed using the HTTP API

• Calls from the CLI and UI invoke the HTTP API. CLI is just a thin wrapper on
the HTTP API

• UI must be enabled via configuration file

• Authentication required to access any of the interfaces

Vault Interfaces

Humans/Users

User Interface
Vault

Interfaces

Applications

HTTP API

Orchestration

Command Line

Who Uses
The Interface?

Want to Learn More?

Command Line

Objective 6
Utilize Vault CLI

User Interface

Objective 7
Utilize Vault UI

HTTP API

Objective 8
Be Aware of the

Vault API

Installing Vault

• Vault is platform agnostic….meaning it can be run on many different
underlying platforms

Kubernetes

Cloud-based Machines (AWS Instances, Azure Virtual Machines)

VMware Virtual Machines

Physical Servers

A Laptop

Installing Vault

• Vault is also available for many operating systems…

 macOS

 Windows

 Linux

 FreeBSD

 NetBSD

 OpenBSD

 Solaris

Installing Vault
Order of Operations

1
2
3
4

Install Vault

Create Configuration File

Initialize Vault

Unseal Vault

Installing Vault

• So where do I download Vault?

• vaultproject.io

• releases.hashicorp.com/vault

• You can also download/install Vault using your preferred package manager
as well (apt, yum, even homebrew(community supported))

• Use the Vault Helm Chart to install/configure Vault on Kubernetes

Terminal

$ curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -

$ sudo apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com $(lsb_release -cs) main"

$ sudo apt-get update && sudo apt-get install vault

Terminal

$ helm install vault hashicorp/vault

Installing Vault

Download Vault from HashiCorp

Unpackage Vault to a Directory

Set Path to Executable

Running Vault Dev Server

Non-Persistent – Runs in memory

Insecure – doesn’t use TLS Automatically initialized and unsealed

Sets the listener to 127.0.0.1:8200Enables the UI – available at localhost

Mounts a K/V v2 Secret EngineProvides an Unseal Key

Provides a root tokenAutomatically logs in as root

Quickly run Vault without configuration

Where Would I Use Dev Server?

Proof of Concepts

Testing New Features of Vault

New Development Integrations

Experimenting with FeaturesDev Server Mode

Installing Vault

Download Vault from HashiCorp

Unpackage Vault to a Directory

Set Path to Executable

$ vault server -dev

Running Vault Server in Production

• Deploy one or more persistent nodes via configuration file

• Use a storage backend that meets the requirements

• Multiple Vault nodes will be configured as a cluster

• Deploy close to your applications

• Most likely, you’ll automate the provisioning of Vault

Running Vault Server in Production

• To start Vault, run the vault server –config=<file> command

• In a production environment, you'll have a service manager executing
and managing the Vault service (systemctl, Windows Service Manager,
etc.)

• For Linux, you also need a systemd file to manage the service for Vault
(and Consul if you're running Consul)

Running Vault Server in Production

• Systemd for a Vault service:
• https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/vault.service

• Systemd file for a Consul Server:
• https://github.com/btkrausen/hashicorp/blob/master/consul/consul.service

• Systemd for a Consul client (that would run on the Vault node):
• https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/consul-client.json

https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/vault.service
https://github.com/btkrausen/hashicorp/blob/master/consul/consul.service
https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/consul-client.json

Running Vault Server in Production
Single Node

- -

- -

Configuration
File

Storage
Backend

Not a Recommended Architecture
• No Redundancy
• No Scalability

TLS

Running Vault Server in Production
Multi-Node Vault Cluster (with Integrated Storage)

Vault Node A Vault Node B Vault Node C

Integrated Storage
Replication
(network)

Running Vault Server in Production
Multi-Node Vault Cluster (with external storage backend)

Storage
Backend (HA)

Vault Node A Vault Node B Vault Node C

Running Vault Server in Production
Step-by-Step Manual Install

Download Vault from HashiCorp

Unpackage Vault to a Directory

Set Path to Executable

Add Configuration File & Customize

Create Systemd Service File

Download Consul from HashiCorp

Configure and Join Consul Cluster

Launch Vault Service

1

2

3

4

5

6

7

8

Deploying the Consul Storage Backend

Provides Durable K/V Storage For Vault Supports High Availability

Built-in Integration Between Consul/Vault HashiCorp Supported

Can Independently Scale Backend Distributed System

Easy To Automate Built-in Snapshots For Data Retention

Deploying the Consul Storage Backend

• Consul is deployed using multiple nodes and configured as a cluster

• Clusters are deployed in odd numbers (for voting members)

• All data is replicated among all nodes in the cluster

• A leader election promotes a single Consul node as the leader

• The leader accepts new logs entries and replicates to all other nodes

• Consul cluster for Vault storage backend shouldn’t be used for Consul
functions in a production setting

Deploying the Consul Storage Backend

Region

VPC

Availability Zone 1 Availability Zone 2

Private Subnet Private Subnet

Availability Zone 3

Private Subnet

Special Install of Consul using Redundancy Zones

Deploying the Consul Storage Backend

Vault Node A Vault Node B Vault Node C
Vault

Communicates
with local

Consul Agent

Local Consul Agent
joins the Consul cluster

as client

Deploying the Consul Storage Backend

storage "consul" {
address = "127.0.0.1:8500"
path = "vault/"
token = "1a2b3c4d-1234-abdc-1234-1a2b3c4d5e6a"

}
listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"
tls_disable = 0
tls_cert_file = "/etc/vault.d/client.pem"
tls_key_file = "/etc/vault.d/cert.key"
tls_disable_client_certs = "true"
}
seal "awskms" {
region = "us-east-1"
kms_key_id = "12345678-abcd-1234-abcd-123456789101",
endpoint = "example.kms.us-east-1.vpce.amazonaws.com"

}
api_addr = "https://vault-us-east-1.example.com:8200"
cluster_addr = " https://node-a-us-east-1.example.com:8201"
cluster_name = "vault-prod-us-east-1"
ui = true
log_level = "INFO"

https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/vault.hcl

Example Consul Server Configuration File

Deploying the Consul Storage Backend
{

"log_level": "INFO",
"server": true,
"key_file": "/etc/consul.d/cert.key",
"cert_file": "/etc/consul.d/client.pem",
"ca_file": "/etc/consul.d/chain.pem",
"verify_incoming": true,
"verify_outgoing": true,
"verify_server_hostname": true,
"ui": true,
"encrypt": "xxxxxxxxxxxxxx",
"leave_on_terminate": true,
"data_dir": "/opt/consul/data",
"datacenter": "us-east-1",
"client_addr": "0.0.0.0",
"bind_addr": "10.11.11.11",
"advertise_addr": "10.11.11.11",
"bootstrap_expect": 5,
"retry_join": ["provider=aws tag_key=Environment-Name tag_value=consul-cluster region=us-east-1"],
"enable_syslog": true,
"acl": {

"enabled": true,
"default_policy": "deny",
"down_policy": "extend-cache",
"tokens": {

"agent": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
}

},
"performance": {
"raft_multiplier": 1

}
} https://github.com/btkrausen/hashicorp/blob/master/consul/config.hcl

Example Consul Server Configuration File

Looking for More on Consul?

For a deeper dive on Consul, check
out my dedicated course on Consul:

Getting Started with
HashiCorp Consul

Coupons Available on github.com/btkrausen/hashicorp

Deploying the Integrated Storage Backend

Vault Internal Storage Option Supports High Availability

Eliminates Network Hop to Consul HashiCorp Supported

Leverages Raft Consensus Protocol Only need to troubleshoot Vault

All Vault nodes have copy of Vault's Data Built-in Snapshots For Data Retention

Deploying the Integrated Storage Backend

• Integrated Storage (aka Raft) allows Vault nodes to provide its own
replicated storage across the Vault nodes within a cluster

• Define a local path to store replicated data

• All data is replicated among all nodes in the cluster

• Eliminates the need to also run a Consul cluster and manage it

Deploying the Integrated Storage Backend

Vault Node A Vault Node B Vault Node C

Vault Node D Vault Node E

tcp/8201

Deploying the Integrated Storage Backend

storage "raft" {
path = "/opt/vault/data"
node_id = "node-a-us-east-1.example.com"
retry_join {

auto_join = "provider=aws region=us-east-1 tag_key=vault tag_value=us-east-1"
}

}
listener "tcp" {
address = "0.0.0.0:8200"
cluster_address = "0.0.0.0:8201"
tls_disable = 0
tls_cert_file = "/etc/vault.d/client.pem"
tls_key_file = "/etc/vault.d/cert.key"
tls_disable_client_certs = "true"

}
seal "awskms" {

region = "us-east-1"
kms_key_id = "12345678-abcd-1234-abcd-123456789101",
endpoint = "example.kms.us-east-1.vpce.amazonaws.com"

}
api_addr = "https://vault-us-east-1.example.com:8200"
cluster_addr = " https://node-a-us-east-1.example.com:8201"
cluster_name = "vault-prod-us-east-1"
ui = true
log_level = "INFO"

https://github.com/btkrausen/hashicorp/blob/master/vault/config_files/vault_int_storage.hcl

Example Vault Server Configuration File

Follower Follower Follower FollowerLeader

Deploying the Integrated Storage Backend

Vault Node A Vault Node B Vault Node C Vault Node D Vault Node E

HA
Cluster

• Manually join standby nodes to the cluster using the CLI:
Terminal

$ vault operator raft join https://active_node.example.com:8200

Replicated Data

Deploying the Integrated Storage Backend

• List the cluster members

Terminal

$ vault operator raft list-peers

Node Address State Voter

---- ------- ----- -----

vault_1 10.0.101.22:8201 leader true

vault_2 10.0.101.23:8201 follower true

vault_3 10.0.101.24:8201 follower true

vault_4 10.0.101.25:8201 follower true

vault_5 10.0.101.26:8201 follower true

END OF SECTION

	Introduction to Vault
	Slide Number 2
	Slide Number 3
	How Vault Works
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Why Organizations Choose Vault
	Slide Number 14
	Slide Number 15
	Benefits and Use Cases of Vault
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Comparing Versions of Vault
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Vault Components
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Vault Architecture and Pathing Structure
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Vault Data Protection
	Slide Number 41
	Slide Number 42
	Seal and Unseal
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Unsealing with Key Shards
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Unsealing with Cloud Auto Unseal
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Unsealing with Transit Auto Unseal
	Slide Number 61
	Slide Number 62
	Vault Initialization
	Slide Number 64
	Vault Configuration
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Storage Backends
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Audit Devices
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Vault Interfaces
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Installing and Running Vault Server
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Installing Vault
	Running Vault Dev Server
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Running Vault Dev Server Mode
	Running Vault Server in Production
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Running Vault in Production
	Configuring the Consul Storage Backend
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Configuring the Consul Storage Backend
	Configuring the Integrated Storage Backend
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Configuring the Integrated Storage Backend
	Slide Number 123

