
Create Vault Policies

Objective 2 - Create Vault Policies

Objective 2a

Illustrate the value
of Vault policy

Describe Vault policy
syntax: path

Describe Vault policy
syntax: capabilities

Objective 2b Objective 2c

Why Use Policies?

Anatomy of a Policy

How Policies are
Written and Applied

Determining the path

Using Wildcards

Path Templating

What Capabilities
are Available

When to Use
Certain Capabilities

Root-Protected Paths

Craft a Vault policy
based on requirements

Objective 2d

Writing Policies

Common Paths

Policy Examples

Vault Policies
How Do We Determine Who Should Access Secrets?

admin

admin

DevOps Engineer

DevOps Engineer

user

user

CI/CD Pipeline

CI/CD Pipeline

CI/CD Pipeline

Packer

Terraform

Web Application

Reporting AppAuditor

DBA

Vault Policies

• Vault policies provide operators a way to permit or deny access to certain
paths or actions within Vault (RBAC)

• Gives us the ability to provide granular control over who gets access to
secrets

• Policies are written in declarative statements and can be written using
JSON or HCL

• When writing policies, always follow the principal of least privilege

• In other words, give users/applications only the permissions they need

• Policies are Deny by Default (implicit deny) - therefore you must explicitly grant to paths
and related capabilities to Vault clients

No policy = no authorization

• Policies support an explicit DENY that takes precedence over any other permission

• Policies are attached to a token. A token can have multiple policies

• Policies are cumulative and capabilities are additive

Vault Policies

Dev Policy

Ops Policy
Dev

Policy

Ops
Policy

Token

Out-of-the-Box Vault Policies

• root policy is created by default – superuser with all permissions

• You cannot change nor delete this policy

• Attached to all root tokens

• default policy is created by default – provides common permissions

• You can change this policy but it cannot be deleted

• Attached to all non-root tokens by default (can be removed if needed)

Out-of-the-Box Vault Policies

Terminal

$ vault policy list
default
root

Terminal

$ vault policy read default

Allow tokens to look up their own properties
path "auth/token/lookup-self" {

capabilities = ["read"]
}

Allow tokens to renew themselves
path "auth/token/renew-self" {

capabilities = ["update"]
}

Allow tokens to revoke themselves
path "auth/token/revoke-self" {

capabilities = ["update"]
}

Allow a token to look up its own capabilities on a path
path "sys/capabilities-self" {

capabilities = ["update"]
}
………

Terminal

$ vault policy read root
No policy named: root

Out-of-the-Box Vault Policies

root policy

path "*" {
capabilities = ["read","create","update","delete","list","sudo"]

}

The root policy does not contain any rules but can do anything within
Vault. It should be used with extreme care.

If it did have rules, it would probably look something like this….

Managing Policies in Vault
Command Line Interface (CLI)

Use the vault policy command
• delete
• fmt
• list
• read
• write

Terminal

$ vault policy write admin-policy /tmp/admin.hcl
Success! Uploaded policy: admin-policy

Terminal

$ vault policy list
admin-policy
default
root

Managing Policies in Vault
Command Line Interface (CLI)

vault policy write webapp /tmp/webapp.hcl

Type of Vault
object you want

to work with

Subcommand Define the name
of the policy you
want to create

The location of the file
containing the pre-written

policy

Managing Policies in Vault
User Interface (UI)

Create a New Policy

Click to Download/View/Edit Policy

Click to View/Edit/Delete Policy

Managing Policies in Vault

Creating a new Vault policy
• Method: POST

HTTP API

Terminal

$ curl \
--header "X-Vault-Token: s.bCEo8HFNIIR8wRGAzwXwkqUk" \
--request PUT \
--data @payload.json \
http://127.0.0.1:8200/v1/sys/policy/webapp

Create
Vault
Policy

Don't forget you need
a valid token

API Endpoint Name of the new policy

Managing Policies in Vault

Payload File:

HTTP API

{
"policy": "path \"kv/apps/webapp\" { capabilities… "

}

payload.json

Anatomy of a Vault Policy

• Remember: Everything in Vault is path based

• Policies grant or forbid access to those paths and operations

path "<path>" {
capabilities = ["<list of permissions>"]

}

Two key parts to a Vault policy:

Anatomy of a Vault Policy

path "<path>" {

capabilities = ["<list of permissions>"]

}

path "<path>" {

capabilities = ["<list of permissions>"]

}

path "<path>" {

capabilities = ["<list of permissions>"]

}

Anatomy of a Vault Policy

path "kv\data\apps\jenkins" {

capabilities = ["read","update","delete"]

}

path "sys/policies/*" {

capabilities = ["create","update","list","delete"]

}

path "aws/creds/web-app" {

capabilities = ["read"]

}

Vault Policies - Path

• Path: we already know what a path is
• see Vault Architecture and Pathing Structure in Section 1 for a review

• Examples of paths:
• sys/policy/vault-admin
• kv/apps/app01/web
• auth/ldap/group/developers
• database/creds/prod-db
• secrets/data/platform/aws/tools/ansible/app01
• sys/rekey

The Details Are In The Path

secrets/data/platform/aws/tools/ansible

Path where the
secrets engine

is mounted

Path of an Object

Required
for a KV v2

secrets
engine

Where the
key/value pairs are

stored and
retrieved

Higher-Level Paths
(data could be stored at each

one if needed)

Vault Policies - Path

• Root-Protected Paths
• Many paths in Vault require a root token or sudo capability to use

• These paths focus on important/critical paths for Vault or plugins

• Examples of root-protected paths:
• auth/token/create-orphan (create an orphan token)
• pki/root/sign-self-issued (sign a self-issued certificate)
• sys/rotate (rotate the encryption key)
• sys/seal (manually seal Vault)
• sys/step-down (force the leader to give up active status)

https://learn.hashicorp.com/tutorials/vault/policies#root-protected-api-endpoints

Vault Policies - Path

• Examples of root-protected paths:
• sys/rotate (rotate the encryption key)
• sys/seal (manually seal Vault)
• sys/step-down (force the leader to give up active status)

admin-policy.hcl

path "sys/rotate" {
capabilities = ["sudo"]

}
path "sys/seal" {
capabilities = ["sudo"]

}
path "sys/step-down" {
capabilities = ["sudo"]

}

Vault Policies - Capabilities

• Capabilities define what can we do?
• Capabilities are specified as a list of strings (yes, even if there's just one)

Capability HTTP Verb

create POST/PUT

read GET

update POST/PUT

delete DELETE

list LIST

Capability Description
sudo Allows access to paths that are root-protected

deny Disallows access regardless of any other defined
capabilities

create = if the key does not yet exist
update = if the key exists and you want to replace/update it

Vault Policies - Capabilities

• Create – create a new entry

• Read – read credentials, configurations, etc

• Update – overwrite the existing value of a secret or configuration

• Delete – delete something

• List – view what's there (doesn't allow you to read)

• Sudo – used for root-protected paths

• Deny – deny access – always takes presedence over any other capability

Note: Write is not a valid capability

Vault Policy - Example

path "database/creds/dev-db01" {

capabilities = ["read"]

}

path "kv/apps/dev-app01" {

capabilities = ["create", "read", "update", "delete"]

}

Requirement:
• Access to generate database credentials at database/creds/db01
• Create, Update, Read, and Delete secrets stored at kv/apps/dev-app01

One Policy
With

Mulitple Rules

Vault Policy - Example

Requirements:
• Access to read credentials after the path

kv/apps/webapp

• Deny access to kv/apps/webapp/super-secret

--kv
|--apps

|--webapp
|--super_secret
|--api_token
|--host_name

|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read"]

}

path "kv/apps/webapp/super_secret" {

capabilities = ["deny"]

}

Pop Quiz

--kv
|--apps

|--webapp
|--super_secret
|--api_token
|--host_name

|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read"]

}

path "kv/apps/webapp/super_secret" {

capabilities = ["deny"]

}

Q: Does this policy permit access to
kv/apps/webapp?

A: No, because the policy only permits access to secrets AFTER kv/apps/webapp

Pop Quiz

--kv
|--apps

|--webapp
|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read", "list"]

}

Q: Does this policy permit you to
browse to kv/apps/webapp in the UI?

A: No, because the policy only permits list at the listed path, not the paths
leading up to the desired path

Using the * to Customize the Path

• The glob (*) is a wildcard and can only be used at the end of a path

• Can be used to signify anything "after" a path or as part of a pattern

• Examples:

• secret/apps/application1/* - allows any path after application1

• kv/platform/db-* - would match kv/platform/db-2 but not kv/platform/db2

The Details Are In The Path

secret/apps/application1/*

Path where the
secrets engine

is mounted

Path created on the secrets engine
called secret

Apply capabilities on
anything AFTER

application1

Does it Match?

secret/apps/application1/*

 secret/apps/application1/db

 secret/apps/application1/data/production

 secret/apps/application1/web-app

 secret/apps/application1/keys/api_key

Paths that Match

Path must start with this – nothing else Must ALSO include something
beyond application1

ꓫ secret/apps/database

ꓫ secret/apps/application2

ꓫ secret/data/front-end

ꓫ kv/secret/app/application

Paths that Do Not Match

Pop Quiz

path "secret/apps/application1/*" {
capabilities = ["read"]

}

Given the policy:

secret/apps/application1

Can I read from the following path?

No, because the policy only permits read access for anything AFTER
application1, not the path secret/apps/application1 itselfAnswer:

required

Pop Quiz

path "secret/apps/application1/*" {
capabilities = ["read"]

}

path "secret/apps/application1" {
capabilities = ["read"]

}

If we wanted to ALSO read from secret/apps/application1,
the policy would look like this:

NEW

Using the + to Customize the Path

• The plus (+) supports wildcard matching for a single directory in the
path

• Can be used in multiple path segments (i.e., secret/+/+/db)

• Examples:
• secret/+/db - matches secret/db2/db or secret/app/db

• kv/data/apps/+/webapp – matches the following:

• kv/data/apps/dev/webapp

• kv/data/apps/qa/webapp

• kv/data/apps/prod/webapp

The Details Are In The Path

secret/data/+/apps/webapp

Path where the
secrets engine

is mounted

Remaining pathCan be ANY
value

Used for KV V2
Secrets Engine

Does it Match?

secret/data/+/apps/webapp

 secret/data/production/apps/webapp

 secret/data/dev1/apps/webapp

 secret/data/team-abc/apps/webapp

 secret/data/456/apps/webapp

Paths that Match

Path must start with
this – nothing else

Can be
ANY value

ꓫ secret/data/apps/webapp

ꓫ secret/app123/dev

ꓫ secret/data/front-end/apps

ꓫ secret/dev/apps/webapp

Paths that Do Not Match

Path must end with
this – nothing else

Example Policy

path "secret/+/+/webapp" {
capabilities = ["read", "list"]

}

path "secret/apps/+/team-*" {
capabilities = ["create", "read"]

}

Combining the * and + in a policy

Using multiple + in a policy

ACL Templating

• Use variable replacement in some policy strings with values available
to the token

• Define policy paths containing double curly braces: {{<parameter>}}

path "secret/data/{{identity.entity.id}}/*" {
capabilities = ["create", "update", "read", "delete"]

}

path "secret/metadata/{{identity.entity.id}}/*" {
capabilities = ["list"]

}

Example: Creates a section of the key/value v2 secret engine to a specific user

ACL Templating

Parameter Description

identity.entity.id The entity's ID

identity.entity.name The entity's name

identity.entity.metadata.<<metadata key>> Metadata associated with the entity for the given key

identity.entity.aliases.<<mount accessor>>.id Entity alias ID for the given mount

identity.entity.aliases.<<mount accessor>>.name Entity alias name for the given mount

identity.entity.aliases.<<mount accessor>>.metadata.<<metadata key>> Metadata associated with the alias for the given mount and metadata key

identity.groups.ids.<<group id>>.name The group name for the given group ID

identity.groups.names.<<group name>>.id The group ID for the given group name

identity.groups.names.<<group id>>.metadata.<<metadata key>> Metadata associated with the group for the given key

identity.groups.names.<<group name>>.metadata.<<metadata key>> Metadata associated with the group for the given key

https://learn.hashicorp.com/tutorials/vault/policy-templating?in=vault/policies

What Policies Are Attached

$ vault token create -policy="web-app"

Key Value
--- -----
token s.7uBlZwXSxOg31uGXIUetEdXD
token_accessor 18r88muoe3x1xEqVqXdlTMwJ
token_duration 768h
token_renewable true
token_policies ["default" "web-app"]
identity_policies []
token_policies [default web-app]

Create a new token with "web-app" policy attached:

Every token gets the default policy
plus the assigned policy or policies

Testing Policies

TERMINAL

$ vault token create -policy="web-app"

Authenticate with the newly generated token
$ vault login <token>

Make sure that the token can read
$ vault read secret/apikey/Google

This should fail
$ vault write secret/apikey/Google key="ABCDE12345"

Request a new AWS credentials
$ vault read aws/creds/s3-readonly

Test to make sure the policy fulfills the requirements

Example Requirements:

• Clients must be able
to request AWS
credential granting
read access to a S3
bucket

• Read secrets from
secret/apikey/Google

Administrative Policies

• Permissions for Vault backend functions live at the sys/ path

• Users/admins will need policies that define what they can do within
Vault to administer Vault itself

• Unsealing

• Changing policies

• Adding secret backends

• Configuring database configurations

Administrative Policies

Configure License
path "sys/license" {

capabilities = ["read", "list", "create", "update", "delete"]
}
Initialize Vault
path "sys/init" {

capabilities = ["read", "update", "create"]
}
Configure UI in Vault
path "sys/config/ui" {

capabilities = ["read", "list", "update", "delete", "sudo"]
}
Allow rekey of unseal keys for Vault
path "sys/rekey/*" {

capabilities = ["read", "list", "update", "delete"]
}
Allows rotation of master key
path "sys/rotate" {

capabilities = ["update", "sudo"]
}
Allows Vault seal
path "sys/seal" {

capabilities = ["sudo"]
}

Licensing

Setup New Vault Cluster

Configure UI

Rotate Keys

Seal Vault

Exam Tips for Objective 2

Exam Tips

• Basics about policies:

• Path-based providing granular control of access in Vault

• Declaritive rules to grant or deny access to paths

• Deny by default (no policy means no permission)

• Remember there are two default policies, root and default

• Root policy permits access to everything and is tied to a root token

• Default policy is applied to all non-root tokens unless you disable it

Exam Tips

• Know the basics about what the default policy permits

• Know the capabilities that can be used in a policy

• CRUD (create, read, update, delete)

• list, sudo, deny

• Difference between create and update

• Create is needed if the object/config doesn't yet exist

• Update is need to change an existing object/configuration

Exam Tips

• Understand what root-protected paths are and know the paths that
require elevated privileges

• (https://learn.hashicorp.com/tutorials/vault/policies#root-protected-api-endpoints)

• Customizing the policy:

• Remember how to use the * and + and where they apply

• Know some of the basic templating options for a path

END OF SECTION

	Slide Number 1
	Create Vault Policies
	Section Overview
	Slide Number 4
	Intro to Vault Policies
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Managing Policies using the CLI
	Slide Number 13
	Slide Number 14
	Managing Policies using the UI
	Slide Number 16
	Managing Policies using the API
	Slide Number 18
	Slide Number 19
	Working with Vault Policies
	Anatomy of a Vault Policy
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Vault Policies - Path
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Vault Policies - Capabilities
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Customizing the Path
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Working with Policies
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Exam Tips
	Exam Tips for Objective 2
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59

