
Assess Vault Tokens

Objective 3 – Assess Vault Tokens

Objective 3a – Describe Vault Token

Objective 3b – Differentiate between service and batch tokens. Choose one based on use-case

Objective 3c – Describe root token uses and lifecycle

Objective 3d – Define token accessors

Objective 3e – Explain time-to-live

Objective 3f – Explain orphaned tokens

Objective 3g – Create tokens based on need

Vault Interfaces
Authentication

Thank you!

Vault Interfaces

Here is your
room key!

Room

Gym

VIP Lounge

Spa

VALID FOR 3 DAYS

Vault Interfaces

We present our key.
We don't authenticate again

Vault Interfaces
Token Generation

Authentication

Username & Password
RoleID & Secret ID

TLS Certificate
Integrated Cloud Creds

Generate Token

Vault Path(s)
Read/Write/Delete/List

VALID FOR 4 HOURS
(TTL)

Vault Interfaces
Token Usage

Retrieve Data from a Path

kv/apps/secret

Return Requested Data

username: v_data_3j38d3
password: 409fls2094()kj20d

 Token is Valid
 Token is not Expired
 Token has Permission

We present our token.
We don't authenticate again

• Tokens are the core method for authentication

• Most operations in Vault require an existing token (not all, though)

• Accessing a login path doesn't, for example

• The token auth method is responsible for creating and storing tokens

• The token auth method cannot be disabled

• Tokens can be used directly, or they can be used with another auth method

• Authenticating with an external identity (e.g. LDAP) dynamically generate tokens

• Tokens have one or more policies attached to control what the token is allowed to
perform

Vault Tokens

Types of Tokens

• service tokens are the default token type in Vault

• They are persisted to storage (heavy storage reads/writes)
• Can be renewed, revoked, and create child tokens
• Most often, you'll be working with service tokens

• batch tokens are encrypted binary large objects (blobs)

• Designed to be lightweight & scalable
• They are NOT persisted to storage but they are not fully-featured
• Ideal for high-volume operations, such as encryption
• Can be used for DR Replication cluster promotion as well

Comparing Token Types
Characteristic Service Tokens Batch Tokens

Can be Root Tokens

Can Create Child Tokens

Renewable

Can be Periodic

Can have Explicit Max TTL

Has an Accessor

Has Cubbyhole

Revoked with Parent (if not orphan) Stops Working

Dynamic Secrets Lease Assignment Self Parent (if not orphan)

Can be used across Performance Replication clusters

Creation scales with Performance Standby Node Count

Performance Cost
Heavyweight

Mulitple Writes Per
Token Creation

Lightweight
No Storage Cost for

Token Creation

Primary
Differences

Information/Metadata Attached to a Token

Tokens carry information and metadata that determines how
the token can be used, what type of token, when it expires, etc.

• Accessor
• Policies
• TTL
• Max TTL
• Number of Uses Left
• Orphaned Token
• Renewal Status

Information/Metadata Attached to a Token
TERMINAL

$ vault token lookup s.d1BCdhug8buTgAnSZhtPm8Hp

Key Value
--- -----
accessor 5mXJQjjQvG44ymJZ0lSHihTG
creation_time 1630436317
creation_ttl 768h
display_name token
entity_id n/a
expire_time 2021-10-02T14:58:37.2194177-04:00
explicit_max_ttl 0s
id s.d1BCdhug8buTgAnSZhtPm8Hp
issue_time 2021-08-31T14:58:37.2194177-04:00
meta <nil>
num_uses 0
orphan false
path auth/token/create
policies [default user]
renewable true
ttl 767h59m47s
type service

Token Heirarchy

• Each token has a time-to-live (TTL)

• Exception: root token has no TTL

• Tokens are revoked once reached its TTL unless renewed

• Once a token reaches its max TTL, it gets revoked

• May be revoked early by manually revoking the token

• When a parent token is revoked, all of its children are revoked as
well

Token Heirarchy

s.d1BCdhug8buTgAnSZhtPm8Hp
TTL = 3h

s.LXpc2tx1zE5PtqHl8oztuawI
TTL = 4h

s.JvRl6DcA8YlzqBA60bwRjuXu
TTL = 1h

s.1F36htGI5x3YzOntkzbTMact
TTL = 2h

1. First to be Revoked

2. Child Token is Also Revoked

3. Next to be Revoked

4. Child Token is Also Revoked

Controlling Token Lifecycle

What if I don't like the default
behavior of the token hierarchy or

my app can't handle it?

There are other options

Controlling Token Lifecycle

I have a long-running app which
cannot handle the regeneration of

a token or secret

Use a Periodic Service Token

App Developer

Controlling Token Lifecycle

I need a token that gets revoked
automatically after one use

Use a Service Token with a Use Limit

Principal Engineer

Controlling Token Lifecycle

My app can't use a token where
its expiration is influenced by its

parent

You can use an Orphan Token

DevOps Engineer

Controlling Token Lifecycle

Challenge Solution

I have a long-running app which cannot handle the
regeneration of a token or secret Periodic Service Token

I need a token that gets revoked automatically after
one use Service Token with Use Limit

My app can't use a token where its expiration is
influenced by its parent Orphan Service Token

Summary

Periodic Token

• When having a token be revoked would be problematic:

• Root or sudo users have the ability to generate periodic tokens

• Periodic tokens have a TTL, but no max TTL

• Periodic tokens may live for an infinite amount of time, so long as
they are renewed within their TTL

path "auth/token/create" {
capabilities = ["create", "read", "update", "delete", "sudo"]

}

policy.hcl

This is useful for long-running services/applications that cannot
handle regenerating a token

Periodic Token

admin-policy.hcl

$ vault token create -policy=training -period=24h

Key Value
--- -----
token s.2kjqZ12ofDr3efPdtMJ1z5dZ
token_accessor 73rjN1kmnzwT71pMw9H7p6P9
token_duration 24h
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

No Max TTL

Periodic Token
admin-policy.hcl

$ vault token lookup s.ya32UrL0ASLkvIOLsM5mVl9c
Key Value
--- -----
accessor 73rjN1kmnzwT71pMw9H7p6P9
creation_time 1632751059
creation_ttl 24h
display_name token
entity_id n/a
expire_time 2021-09-28T09:57:39.7239753-04:00
explicit_max_ttl 0s
id s.2kjqZ12ofDr3efPdtMJ1z5dZ
issue_time 2021-09-27T09:57:39.7239753-04:00
meta <nil>
num_uses 0
orphan false
path auth/token/create
period 24h
policies [default training]
renewable true
ttl 23h59m28s
type service

Service Token with Use Limits

• When you want to limit the number of requests coming to Vault from a
particular token:
• Limit the token's number of uses in addition to TTL and Max TTL

• Use limit tokens expire at the end of their last use, regardless of their remaining
TTLs

• Use limit tokens expire at the end of their TTLs, regardless of remaining uses

Create
Token

TTL: 24h
Use: 3

0hr 12h 24h

Use
Token

TTL: 21h
Use: 2

Use
Token

TTL: 14h
Use: 1 Use

Token

TTL: 9h
Use:0

Revoked

Service Token with Use Limits

admin-policy.hcl

$ vault token create -policy="training" -use-limit=2
Key Value
--- -----
token s.516LO9Ssk1CQzvKo8ny1G0eu
...

$ vault token lookup s.516LO9Ssk1CQzvKo8ny1G0eu
Key Value
--- -----
...
id s.516LO9Ssk1CQzvKo8ny1G0eu
issue_time 2021-12-25T18:35:08.004652-08:00
meta <nil>
num_uses 2

Orphan Token

• When the token hierarchy behavior is not desirable:
• Root or sudo users have the ability to generate orphan tokens

• Orphan tokens are not children of their parent; therefore, do not expire when
their parent does

• Orphan tokens still expire when their own Max TTL is reached

path "auth/token/create-orphan" {
capabilities = ["create", "read", "update", "delete", "sudo"]

}

policy.hcl

Orphan Token

admin-policy.hcl

$ vault token create -policy="training" -orphan
Key Value
--- -----
token s.3rPJCQbGWD9O6uybtTuojjFs
...

$ vault token lookup s.3rPJCQbGWD9O6uybtTuojjFs
Key Value
--- -----
...
id s.3rPJCQbGWD9O6uybtTuojjFs
issue_time 2018-12-13T18:35:41.02532-08:00
meta <nil>
num_uses 0
orphan true
...

Setting the Token Type

admin-policy.hcl

$ vault token create -policy="training" -period="24h"

Key Value
--- -----
token s.2kjqZ12ofDr3efPdtMJ1z5dZ
token_accessor 73rjN1kmnzwT71pMw9H7p6P9
token_duration 24h
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Setting the Token Type

• To configure the AppRole auth method to generate batch tokens:

• To configure the AppRole auth method to generate periodic tokens:

$ vault auth enable approle

$ vault write auth/approle/role/training policies="training" \
token_type="batch" \
token_ttl="60s"

TERMINAL

$ vault write auth/approle/role/jenkins policies="jenkins" \
period="72h"

TERMINAL

Managing Tokens in Vault
Command Line Interface (CLI)

Use the vault token command
• capabilities
• create
• lookup
• renew
• revoke

Terminal

vault token revoke s.tvIb1APJV2BQby01PEw4EgIN
Success! Revoked token (if it existed)

Terminal

$ vault token create -ttl=5m -policy=training

Key Value
--- -----
token s.12VNpg4OA9tTdCd4V6ODuDRK
token_accessor lMIaZ4Tn1t57wKXdsfNv7vlm
token_duration 5m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Managing Tokens in Vault
Command Line Interface (CLI)

vault token create –policy=training –ttl=24h

Type of Vault
object you want

to work with

Subcommand Define the policy or policies you
want to attach to the token

Define the length
of validity for the

token

Managing Tokens in Vault
Command Line Interface (CLI)

vault token create \
–display_name=jenkins \
–policy=training,certs \
–ttl=24h \
–explicit-max-ttl = 72h

Specify the TTL

Assign multiple policies

Give it a friendly name

Vault command to create token

Specify the Maximum TTL

Managing Tokens in Vault
Command Line Interface (CLI)

Terminal

$ vault token revoke s.12VNpg4OA9tTdCd4V6ODuDRK
Success! Revoked token (if it existed)

Terminal

$ vault token create -ttl=5m -policy=training

Key Value
--- -----
token s.12VNpg4OA9tTdCd4V6ODuDRK
token_accessor lMIaZ4Tn1t57wKXdsfNv7vlm
token_duration 5m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Terminal
$ vault token lookup s.12VNpg4OA9tTdCd4V6ODuDRK

Key Value
--- -----
accessor lMIaZ4Tn1t57wKXdsfNv7vlm
creation_time 1630613718
creation_ttl 5m
display_name token
entity_id n/a
expire_time 2021-09-02T16:23:02.6427677-04:00
explicit_max_ttl 0s
id s.12VNpg4OA9tTdCd4V6ODuDRK
issue_time 2021-09-02T16:15:18.5177235-04:00
last_renewal 2021-09-02T16:18:02.6427677-04:00
last_renewal_time 1630613882
meta <nil>
num_uses 0
orphan false
path auth/token/create
policies [default training]
renewable true
ttl 3m12s
type service

Create a Token Lookup Information About a Token

Revoke a Token

Managing Tokens in Vault
Command Line Interface (CLI)

Terminal

$ vault token lookup s.dhtIk8VsE3Mj61PuGP3ZfFrg
Key Value
--- -----
accessor INk5tw0tl3N2xs0XZZfPc9Tq
creation_time 1630614230
creation_ttl 5m
policies [default training]
renewable true
ttl 3m31s
type service)
…

Terminal

$ vault token capabilities s.dhtIk8VsE3Mj61PuGP3ZfFrg kv/data/apps/webapp
create, list, read, sudo, update

Look up the capabilities of a token on a particular path

Lookup a Token
Terminal

$ vault token renew s.dhtIk8VsE3Mj61PuGP3ZfFrg
Key Value
--- -----
token s.dhtIk8VsE3Mj61PuGP3ZfFrg
token_accessor INk5tw0tl3N2xs0XZZfPc9Tq
token_duration 5m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Renew the Token

Abbreviated Output

Managing Tokens in Vault
User Interface (UI)

Click to Download/View/Edit Policy

Click to View/Edit/Delete Policy

Log in directly
with a token

Managing Tokens in Vault
User Interface (UI)

Copy the Token
You're Using

Click to Download/View/Edit Policy

Click to View/Edit/Delete Policy

Managing Tokens in Vault
HTTP API

• Authenticating to Vault with an auth method will result in a response
that includes a token
• Response is in JSON, so you can parse the response to get the token

• Use jq to parse .auth.client_token is the value you want

• Future requests to Vault, such as requests for a secret or to make a
configuration change should include this token
• Token is sent via X-Vault-Token header

• Authorization Bearer is also a valid header

Managing Tokens in Vault
HTTP API

$ curl --request POST --data @payload.json http://127.0.0.1:8200/v1/auth/userpass/login/bryan | jq

{
"request_id": "0b4181fe-0dec-2261-5231-bb3f033387e5",
"lease_id": "",
"renewable": false,
"auth": {

"client_token": "s.WNS4zL4c4wQJet9KS9KItkHW",
"accessor": "zsap13bBoQGzB5xVPZFEu3Th",
"policies": [

"default",
"training"

],
"token_policies": [

"default",
"training"

],
"metadata": {

"username": "bryan"
},
"lease_duration": 2764800,
"renewable": true,
"entity_id": "88669d54-b405-c27a-d468-410a1185eb0d",
"token_type": "service",
"orphan": true

}
}

TERMINAL

Managing Tokens in Vault

Terminal

$ curl --request POST --data @payload.json http://127.0.0.1:8200/v1/auth/userpass/login/bryan |
jq -r ".auth.client_token" > token.txt

$ cat token.txt
s.dhtIk8VsE3Mj61PuGP3ZfFrg

Authenticate and store the resulting token in a file

Terminal

$ OUTPUT=$(curl --request POST --data @payload.json
http://127.0.0.1:8200/v1/auth/userpass/login/bryan)

$ VAULT_TOKEN=$(echo $OUTPUT | jq '.auth.client_token' -j)

$ echo $VAULT_TOKEN
s.dhtIk8VsE3Mj61PuGP3ZfFrg

Authenticate and store the resulting token in an environment variable

HTTP API

Managing Tokens in Vault
HTTP API

Client token must be sent in the X-Vault-Token HTTP header

Terminal

$ curl --header "X-Vault-Token: s.dhtIk8VsE3Mj61PuGP3ZfFrg" \

--request POST \

--data '{ "apikey": "3230sc$832d" }'

https://vault.example.com:8200/v1/secret/apikey/splunk

Terminal

$ curl --header "X-Vault-Token: s.dhtIk8VsE3Mj61PuGP3ZfFrg" \

--request GET \

https://vault.example.com:8200/v1/secret/data/apikey/splunk

Root Tokens

Root token is a superuser that has unlimited access to Vault

• It does NOT have a TTL – meaning it does not expire

• Attached to the root policy

• Note: Root tokens can create other root tokens that DO have a TTL

Root tokens should NOT be used on a day-to-day basis

• In fact, rarely should a root token even exist

• Once you have used the root token, it should be revoked

Where Do Root
Tokens Come From?

Root Tokens

Where do Root Tokens Come From?

Initial root token comes from Vault initialization

• Only method of authentication when first deploying Vault

• Used for initial configuration – such as auth methods or audit devices

• Once your new auth method is configured and tested, the root token
should be revoked

Terminal

$ vault token revoke s.dhtIk8VsE3Mj61PuGP3ZfFrg
Success! Revoked token (if it existed)

vault operator init

Where do Root Tokens Come From?

Create a root token from an existing root token
• You can authenticate with a root token and run a vault token create

Terminal

$ vault login s.lmmOCfNH1HZvvBwxnLErWrhK
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token s.lmmOCfNH1HZvvBwxnLErWrhK
token_accessor 5UNwzGSr1TOGymhERwZeAMgr
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

$ vault token create
Key Value
--- -----
token s.tiRn8HflpBJNssFaSWTTCOI2
token_accessor anZIDsIUzPUcs6hKKsOdwOXj
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

1. Log in with root token

2. Create a new root token

New root token

Existing Root Token

Where do Root Tokens Come From?

Create a root token using unseal/recovery keys
• Helpful if you need to generate a root token in an emergency or a root token is

needed for a particular task

• A quorum of unseal key holders can generate a new root token

• Enforces the "no single person has complete access to Vault"

Step 1

Initialize the root
generation

Step 2

Each key holder runs
'generate root' with

their unseal key

Step 3

Decode the generated
root token

Using Keys

Generating a Root Token

To perform the task, use the vault operator generate-root command

Command Options Description

-generate-otp Generate and print high-entropy one-time-password

-init Start a root token generation

-decode=<string> Decode and output the generated root token

-otp=<string> OTP code to use with –decode or –init

-status Print the status of the current attempt

-cancel Cancel the current attempt

Using Keys

Generating a Root Token
Using Keys – Step 1

Terminal

$ vault operator generate-root -init
A One-Time-Password has been generated for you and is shown in the OTP field.
You will need this value to decode the resulting root token, so keep it safe.

Nonce 5b6e3831-2a45-4695-7757-5810074d36c8
Started true
Progress 0/1
Complete false
OTP E87jF6ZeJo8NjJwvytl7mvKLEr
OTP Length 26

One-Time-Password (OTP) gets generated

Generating a Root Token
Using Keys – Step 2

Terminal

$ vault operator generate-root
Root generation operation nonce: f8579a51-5138-c31...
Unseal Key (will be hidden):
Nonce f8579a51-5138-c319-445d-2d3640119f87
Started true
Progress 1/3
Complete false

Key holders each provide their key until you
meet the threshold

Generating a Root Token
Using Keys – Step 3

Terminal

$ vault operator generate-root
Root generation operation nonce: f8579a51-5138-c319...
Unseal Key (will be hidden):
Nonce f8579a51-5138-c319-445d-2d3640119f87
Started true
Progress 3/3
Complete true
Encoded Token G2NeKUZgXTsYYxILAC9ZFBguPw9ZXBovFAs

Encrypted Root Token

Generating a Root Token
Using Keys – Step 4

Terminal

$ vault operator generate-root \
-otp="hM9q24nNiZfnYIiNvhnGo4UFc3" \
-decode="G2NeKUZgXTsYYxILAC9ZFBguPw9ZXBovFAs"

Root token: s.gXtT3uq9teYf0ZnFQH6hOiw8

We Got A Root Token!!!

Token Accessors

Every token has a token accessor that is used as a reference to the token

Token accessors can be used to perform limited actions
• Look up token properties

• Look up the capabilities of a token

• Renew the token

• Revoke the token

Token accessors cannot be used for authentication to Vault or to perform
additional requests

Token Accessors

Terminal

$ vault login s.cbC7GJ6U6WJaDuDSgkyVcKDv
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token s.cbC7GJ6U6WJaDuDSgkyVcKDv
token_accessor K6pHtVc9LbXQdUavg2J1Ixa2
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

Root Token Accessor Example

Token Accessors

Terminal

$ vault token create -policy=training -ttl=30m

Key Value
--- -----
token s.5YmCHHV80mN3dJpzOwvVAYk8
token_accessor 2ogWa36gDH5wsO8VbuxroByx
token_duration 30m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Regular Token Accessor Example

Token Accessors

Terminal

$ vault token lookup -accessor gFq2UwnJ0jo87kESKwUcl1Ub

Key Value
--- -----
accessor gFq2UwnJ0jo87kESKwUcl1Ub
creation_time 1632576647
creation_ttl 30m
display_name token
entity_id n/a
expire_time 2021-09-25T10:00:47.0615482-04:00
explicit_max_ttl 0s
id n/a
issue_time 2021-09-25T09:30:47.0615482-04:00
meta <nil>
num_uses 0
orphan false
path auth/token/create
policies [default training]
renewable true
ttl 29m18s
type service

Viewing the Properties of a Token Using its Accessor

Token Accessors

Terminal

$ vault token create -policy=training -ttl=30m

Key Value
--- -----
token s.5YmCHHV80mN3dJpzOwvVAYk8
token_accessor 2ogWa36gDH5wsO8VbuxroByx
token_duration 30m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

$ vault token revoke 2ogWa36gDH5wsO8VbuxroByx
Success! Revoked token (if it existed)

Revoking a Token using the Accessor

Token Accessors

Terminal

$ vault token renew -accessor gFq2UwnJ0jo87kESKwUcl1Ub

Key Value
--- -----
token n/a
token_accessor gFq2UwnJ0jo87kESKwUcl1Ub
token_duration 30m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

Renew a Token using the Accessor

Renewed TTL

Token Accessors

Terminal

$ vault token create -policy=training -ttl=30m
Key Value
--- -----
token s.vZRfetFFawRIVKJu8Uc50M9o
token_accessor gFq2UwnJ0jo87kESKwUcl1Ub
token_duration 30m
token_renewable true
token_policies ["default" "training"]
identity_policies []
policies ["default" "training"]

$ set VAULT_TOKEN=gFq2UwnJ0jo87kESKwUcl1Ub

$ vault kv get secret/apps/training
Error making API request.

URL: GET
http://127.0.0.1:8200/v1/sys/internal/ui/mounts/secret/apps/training
Code: 403. Errors:

* permission denied

Cannot Use an Accessor to Perform Traditional Vault Actions

Explaining Time-To-Live (TTL)

Explaining Time-To-Live (TTL)

Here is your
room key!

VALID FOR 8 DAYS
(TTL)

Time-To-Live (TTL)

Every non-root token has a TTL, which is the period of validity (how long
it's good for)

TTL is based on the creation (or renewal) time:
• Example: New token was created - valid for 30 minutes from now

• Example: token was just renewed for 30 min = has a new 30m TTL

When a token's TTL expires, the token is revoked and is no longer valid
and cannot be used for authentication.

• Renewal must take place before the TTL expires

Time-To-Live (TTL)

A token can have a TTL and a Max TTL
• This means the token can be renewed up until the Max TTL

• Once the token hits the Max TTL, it cannot be renewed further

Token
Created

TTL: 2h
Max TTL: 6h

0hTime 1h 2h 3h 4h 5h

Token
Renewed

TTL: 2h

Original
token would
expire here

Renewed token
would now
expire here

6h

Maximum TTL:
Cannot renew
past 6 HoursToken

Renewed
TTL: 2h

Renewed
token would
now expire

here
Remaining Time

Token
Revoked

Time-To-Live (TTL) Example

Token
Created

TTL: 2h
Max TTL: 6h

0hTime 1h 2h 3h 4h 5h

Token
Renewed

TTL: 2h

Original
token would
expire here

Renewed token
would now
expire here

6h

Maximum TTL:
Cannot renew
past 6 Hours

Token
Revoked

Still had 3 hours on Max TTL but token
is now expired and is no longer valid

Default Time-To-Live (TTL)

Vault has a default TTL of 768 hours (which is 32 days)

• This can be changed in the Vault configuration file
• default_lease_ttl = 24h

How Do I Set the TTL for Tokens?

1. Set the TTL explicitly when creating a token:
vault token create –policy=training –ttl=60m

2. Configuration of an Auth Method that results in token with a specific TTL
vault write auth/approle/role/training-role \

token_ttl=1h \
token_max_ttl=24h

3. The default TTL for Vault will be applied to tokens that are created
without explicitly providing a TTL

vault token create –policy=training

1. You have a long-running app which can not handle the regeneration
of a token or secret.

2. You need a token that can be renewed indefinitely (forever)

Create a Token Based on Needs

Requirements

Periodic Token

1. You want to limit the token to be used only 3 times regardless of
remaining TTL

Create a Token Based on Needs

Requirements

Service Token with Use Limits

1. You need a token that isn't impacted by the lifecycle of its parent

2. You want a token that has an expiration beyond the token that
created it

Create a Token Based on Needs

Requirements

Orphan Token

1. You want a token that can only be used by a specific host or within a
certain network block

Create a Token Based on Needs

Requirements

CIDR-Bound Token

(Configured using a Token Role or Different Auth Methods)

P.S - Don't let this confuse you – it's basically just a regular service
token with additional CIDR-bound configuration

1. You need a token that is replicated to all other Vault clusters in a
replica set

2. You need to reduce/minimize the overhead on your storage backend
when creating a large number of tokens

Create a Token Based on Needs

Requirements

Batch Token

Exam Tips for Objective 3

Exam Tips

• Know the different types of tokens

• Service Token

• Batch Token

• Root Token

• Periodic Token

• Orphan Token

• CIDR-Bound Token

• Remember what each token is and what makes it is unique. Don't
forget what use cases would merit the use of each type.

Exam Tips

• Know the differences between a service token and a batch token
• Refer to the comparison chart in "Comparing Token Types"

• Remember that service tokens are written to storage and batch tokens
are not

• Practice using the vault token command and the different options and
flags available

Exam Tips

• Remember the different ways to create a root token

• Know that the root token should be revoked after being used, the root
token does not expire, and it allows unrestricted access to Vault.

• Don't forget the (4) actions that you can perform with a token accessor

• Remember the default TTL in Vault is 768h (32 days)

END OF SECTION

	Assess Vault Tokens
	Section Overview
	Slide Number 3
	Intro to Vault Tokens
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Token Heirarchy
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Periodic Token
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Service Token with Use Limits
	Slide Number 28
	Slide Number 29
	Orphan Token
	Slide Number 31
	Slide Number 32
	Setting the Token Type
	Slide Number 34
	Slide Number 35
	Managing Tokens using the CLI
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Managing Tokens using the UI
	Slide Number 43
	Slide Number 44
	Managing Tokens using the API
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Root Tokens
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Token Accessors
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Explaining Time to Live (TTL)
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Creating tokens based on needs
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Exam Tips
	Exam Tips for Objective 3
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88

