
Describe the Benefits of
Auto Unsealing with HSM

What is an HSM?

• An HSM is a network-based physical device that can safeguard and manage digital keys

• These keys can be used for encryption and decryption functions, digital signatures, strong
authentication, or other functions

• HSMs commonly have tamper resistance – meaning that detection of tampering could invoke a
response such as deleting the keys so nobody can access them

• Large enterprise customers often deploy dedicated physical HSMs in a traditional data center

• Public cloud providers offer access to dedicated or shared HSM services as well.

• AWS CloudHSM or Azure Dedicated HSM is an HSM service where the HSM is dedicated to a single
customer

• AWS KMS is an example of a shared HSM service, where multiple customers may use a service that
is backed by the same HSM

General HSM Support

Vault Enterprise has multiple integrations with an HSM:

• Protect root key by using HSM to encrypt/decrypt root key

• Auto unseal Vault by storing wrapped key on local storage

• Seal wrapping to provide extra layer of protection for FIPS 140-2
compliance

• Entropy Augmentation to generate randomness for cryptographic
operations

Requires HSM that supports PKCS11 standard

Initializing Vault

Storage
Backend

Hardware Security Module (HSM)

Encryption Key (Stored on HSM)

1. Pass Root Key through HSM

2. Return Encrypted Root Key

3. Store Encrypted Root
Key on Storage Backend

Vault Memory

Auto Unseal with HSM

Storage
Backend

Hardware Security Module (HSM)

Encryption Key (Stored on HSM)

2. Pass Encrypted Key to HSM

3. Return Decrypted Root Key

1. Retrieve Encrypted Key
from Storage Backend4. Use Root Key to

Decrypt Encryption Key Encryption
Key

Data

Configuration

seal "pkcs11" {
lib = "/usr/vault/lib/libCryptoki2_64.so"
slot = "2305843009213693953"
pin = "AAAA-BBBB-CCCC-DDDD"
key_label = "vault-hsm-key"
hmac_key_label = "vault-hsm-hmac-key"

}

Make sure not to include sensitive values
in your plaintext configuration file

pkcs11 Environment Variables

• VAULT_HSM_LIB
• VAULT_HSM_TYPE
• VAULT_HSM_SLOT
• VAULT_HSM_TOKEN_LABEL
• VAULT_HSM_PIN
• VAULT_HSM_KEY_LABEL
• VAULT_HSM_DEFAULT_KEY_LABEL
• VAULT_HSM_KEY_ID
• VAULT_HSM_HMAC_KEY_LABEL
• VAULT_HSM_HMAC_DEFAULT_KEY_LABEL

• VAULT_HSM_HMAC_KEY_ID
• VAULT_HSM_MECHANISM
• VAULT_HSM_HMAC_MECHANISM
• VAULT_HSM_GENERATE_KEY
• VAULT_HSM_RSA_ENCRYPT_LOCAL
• VAULT_HSM_RSA_OAEP_HASH
• VAULT_HSM_FORCE_RW_SESSION

You do NOT need to memorize
these for the exam

Describe the Benefits and
Use Cases of Seal Wrapping

What is Seal Wrapping?

Vault already protects my data using 256-bit AES, but how I can provide an
extra layer of protection while meeting FIPS 140-2 compliance?

• Seal Wrapping essentially provides "double encryption" by encrypting the data using keys
stored on an HSM

• Provides FIPS 140-2 compliance* by integrating with an HSM
• Supports the FIPS level equivalent to the HSM – so if you use a Level 3 HSM, you will be used Level 3

cryptography

• Allows Vault to be deployed in high-security GRC environments (PCI, HIPAA, DoD, NATO)

*Starting with v1.10.3, HashiCorp is now publishing Vault binaries that can provide FIPS 140-2
compliance without requiring an HSM integration

What is Seal Wrapped by Default?

• Recovery Key

• Any stored key shares

• The root key

• The keyring

What Can We Enable?

• Seal wrapping is enabled by default on supported seals

• Causes values stored by the mount to be wrapped by the seal's encryption
capability

• You can disable this by setting disable_sealwrap=true in the config file

• Backend mounts (secrets engines, etc.) can take advantage of seal wrapping as well

• When enabling a secrets engine, provide the seal_wrap=true configuration

• CLI flag to enable seal wrap on a secrets engine: -seal-wrap

Enabling Seal Wrapping for Key/Value

Enable a secrets engine with seal wrap
$ vault secrets enable –seal-wrap kv

List the enabled secrets engines
$vault secrets list -detailed
Path Plugin Accessor Seal Wrap
---- ------ -------- -----------
...
cubbyhole/ cubbyhole cubbyhole_b36dd7e1 false
identity/ identity identity_b5650a96 false
kv/ kv kv_fe02767b true

