
Register Services and
Use Service Discovery

Exam Objective 3

Objective 3a: Interpret a service registration

Objective 3b: Differentiate ways to register a single service

Objective 3c: Interpret a service configuration with health check

Check the service catalog status from the output of the
DNS/API interface or via the Consul UI

Difficulty Level

1 2 3 4 5

Register Services and Use Service Discovery

Objective 3e: Interpret a prepared query

Objective 3f: Use a prepared query

Objective 3d:

What is a Service?

Web Application Java App
Microservice

Platform APIs

API

Logging

SearchDatabase

Identity Inventory

What is a Service?

Web Application Java App
Microservice

Platform APIs

API

Logging

SearchDatabase

Identity Inventory

Service Catalog

DNS Query

API Request

• How do I register a service in Consul?

• Register with the local agent using:

• Service Definition File

• HTTP API

• Service Registration typically happens when a new service is provisioned

• Container is scheduled by Kubernetes

• Instance is deployed via Terraform

• Jenkins provisions new VMs on a VMware cluster

Registering a Service

• Register with the Consul API

• Method: PUT

• Endpoint: /v1/agent/service/register

Registering a Service

Terminal

$ curl \
--request PUT \
--data @payload.json \
https://consul.example.com:8500/v1/agent/service/register

Terminal

$ cat payload.json
{
"service": {
"name": "retail-web",
"port": 8080
}

}

Register with a service definition

• Define a service using a service definition file

• .hcl

• .json

Multiple options to register the service using a service definition:

1. Create a single file and set using the –config-file parameter

2. Place file inside of the –config-dir directory <read at startup>

3. Run the consul services register command using file

4. Execute a consul reload command after adding file

Registering a Service

Registering a Service

Consul Server

Consul Clients

Web Application Web Application Web Application

Service
Definition

web-app-01

Service
Definition

web-app-01

Service
Definition

web-app-01

Service
Registration

Terminal

$ consul services register

• File that defines a service to be registered in Consul

• Once registered, the service is added to the Consul service
registry as an available* service

• Parameters included in the service definition may include:

• Service Name

• ID of the agent

• Tags

• IP Address and Port of the service

• Health Checks

Creating a Service Definition

Creating a Service Definition

{
"service": {

"id": "web-server-01",
"name": "front-end-eCommerce",
"tags": ["v7.05", "production"],
"address": "10.3.13.112",
"port": 8080,
"checks": [
{

"args": ["/usr/local/bin/check_mem.py"],
"interval": "30s"

}
],

}
}

Name of the node (server/container)

Name of the service to be registered

Optional Tags for the service

IP Address/Interface for the Service

Port the Service is running on

Health Check for the Service

https://www.consul.io/docs/discovery/services

Creating a Service Definition

• Defaults

• ID will be set to the Name if not set

• Address will be set to the default address of Consul agent

• Default namespace for a registered service:

• <name>.service.consul

• front-end-eCommerce.service.consul

{
"service": {
"id": "web-server-01",
"name": "front-end-eCommerce",
"tags": ["v7.05", "production"],
"address": "10.3.13.112",
"port": 8080,
"checks": [

{
"args": ["/usr/local/bin/check_mem.py"],
"interval": "30s"

}
],

}
}

Creating a Service Definition

• Each ID should be unique per agent

• web-server-01

• web-server-02

• web-server-03

• Default namespace for a registered service:

• <name>.service.consul

• front-end-eCommerce.service.consul

{
"service": {
"id": "web-server-01",
"name": "front-end-eCommerce",
"tags": ["v7.05", "production"],
"address": "10.3.13.112",
"port": 8080,
"checks": [

{
"args": ["/usr/local/bin/check_mem.py"],
"interval": "30s"

}
],

}
}

Creating a Service Definition

• Multiple nodes in the catalog providing the same service

• Provides high-availability and elasticity

• Only registered services passing health checks will be returned

Search01 Search02 Search03

Search04 Search05 Search06

Node
Service

Node
Service

Node
Service

Node
Service

Node
Service

Node
Service

1. API Request
For Search

2. API Response

Search02, Search03
Search04, Search06

Configuring a Service Health Check

• Health checks determine when the node or service is healthy

• Health checks can be created/updated via API or a Service config

• Health check configuration may include:

• Name

• Arguments based on the type of health check

• Interval (how often the check will run)

• Additional parameters based on the type of health check

Configuring a Service Health Check

Platform APIs

API

Types of health checks

• Application-level (service) health check

• System-level (node) health check

Host-Level
Health check

(affects all services)
Application-Level

Health check
(affects only this service)

Single Container

Configuring a Service Health Check

A service may have multiple health checks defined

• If any health check(s) are failing, the node is omitted from service queries

• By default, newly registered health checks are set to 'critical'

• Ensures that services aren't added to service pool before they are confirmed
to be healthy

State of Health Check

Critical Passing
Added to
Service

Pool

Failed

Health
Check

Types of Health Checks

Script Health Check

Alias Health Check

HTTP Health Check

gRPC Health Check

TCP Health Check

Docker Health Check

TTL Health Check

Execute a specified script

Perform GET looking for a 2xx return code

Make TCP connection to IP/Port

Relies on app to report health to endpoint

Invoke app in a Docker container

Probe a gRPC health check endpoint

Determine health/state of another registered service

Types of Health Checks

HTTP Health CheckScript Health Check

https://www.consul.io/docs/discovery/checks

{
"check": {
"id": "mem-util",
"name": "Memory Utilization",
"args": ["/opt/check_mem.py", "-limit", "256MB"],
"interval": "10s",
"timeout": "1s"

}
}

{
"check": {
"id": "api",
"name": "HTTP API on port 5000",
"http": "https://localhost:5000/health",
"tls_skip_verify": false,
"method": "POST",
"header": {"Content-Type": ["application/json"]},
"body": "{\"method\":\"health\"}",
"interval": "10s",
"timeout": "1s"

}
}Run this script

Fail if above this limit

Query this URL for
a 2xx return code

Do this every 10 sec

Types of Health Checks

Docker Health CheckTCP Health Check

https://www.consul.io/docs/discovery/checks

{
"check": {
"id": "ssh",
"name": "SSH TCP on port 22",
"tcp": "localhost:22",
"interval": "10s",
"timeout": "1s"

}
}

{
"check": {
"id": "mem-util",
"name": "Memory utilization",
"docker_container_id": "f972c95ebf0e",
"shell": "/bin/bash",
"args": ["/usr/local/bin/check_mem.py"],
"interval": "10s"

}
}

Do this every 10 sec

Establish connectivity
to this address/port

Connect to this
Docker container

Run this script on
the Docker container

Checking the Service Status from Catalog

• Multiple ways to determine the status of services

1. DNS Query – most commonly used

2. API Request – requires app integration

3. Consul UI – least commonly used

Checking the Service Status from Catalog
DNS Query

Java App
Microservice

Database

Java-app

Database

DNS1. DNS Request

2. Forward Request
to Consul

DNS Forwarder for .consul = <consul nodes>

3. Return Healthy Nodes

4. Respond to
DNS Query

5. Establish Connectivity

Checking the Service Status from Catalog
DNS Query

$ dig @10.0.3.45 –p 8600 front-end-eCommerce.service.consul

; <<>> DiG 9.10.6 <<>> @10.0.3.45 -p 8600 front-end-eCommerce.service.consul
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28340
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 2
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
; front-end-eCommerce.service.consul. IN A

;; ANSWER SECTION:
front-end-eCommerce.service.consul. 0 IN A 10.3.15.67

;; ADDITIONAL SECTION:
front-end-eCommerce.service.consul. 0 IN TXT "consul-network-segment="

;; Query time: 2 msec
;; SERVER: 10.0.3.45 #8600(10.0.3.45)
;; WHEN: Fri Jan 01 00:00:00 EDT 2021
;; MSG SIZE rcvd: 99

Terminal

DNS Query via 'Dig'

(1) Healthy Node Found

IP Address of Available
Service

Checking the Service Status from Catalog
API Request

Java App
Microservice

Database

Java-app

Database

1. API Request

2. API Response

3. Establish Connectivity

Checking the Service Status from Catalog
API Request

$ curl --request GET http://10.0.3.45:8500/v1/catalog/service/front-end-eCommerce
[

{
"ID": "c3efa2a6-226f-c304-bff9-2869da16431a",
"Node": "web-server-01",
"Address": "10.3.15.67",
"Datacenter": "dc1",
"TaggedAddresses": {

"lan": "10.3.15.67",
"lan_ipv4": "10.3.15.67",
"wan": "10.3.15.67",
"wan_ipv4": "10.3.15.67"

},
"NodeMeta": {

"consul-network-segment": ""
},
"ServiceKind": "",
"ServiceID": "web-server-01",
"ServiceName": "front-end-eCommerce",
"ServiceTags": [

"v7.05",
"production"

],
"ServiceAddress": "",
"ServiceWeights": {

"Passing": 1,
"Warning": 1

},
.
.
.

Terminal

API Endpoint for Service

of Nodes Passing Health Checks

Tags

IP Address of a Health Node

Checking the Service Status from Catalog
Consul UI

Healthy DB Service

Healthy Front-End
Service

Tags

BKSQL01

(1) Node for this Service

Introduction to Prepared Query

• Allows you to create and register a more complex service query so it
can be executed later

• Allows for richer queries than just DNS alone

• Used to filter the results of a service request

• Objects defined at the datacenter level

• Created by using the /query API endpoint

• Consumed by either API or DNS query

• <name>.query.consul

Introduction to Prepared Query

I need a new
vehicle

Consul Dealership

It must be a car

It must be red

It must be the
latest model

Introduction to Prepared Query

I need to
connect to a

service

It must be healthy

It must web-app

It must have tag
v6.4

Service Catalog

Web App
v6.3

Web App
v6.3

Web App
v6.4

Search

InventoryLogging

Introduction to Prepared Query

{
"Name": "web-app-v64",
"Service": {
"Service": "web-app",
"Tags": ["v6.4"]
}

}

My First Prepared Query

Name of the Prepared Query

The Service We Want

Only Return Services with Matching Tags

• DNS: web-app-v64.query.consul
• API: https://consul.example.com:8500/v1/query/<uuid>/execute

Executing the Prepared Query

Adding Failover Policies

• When multiple datacenters are federated, we can extend prepared
queries to return services in other datacenters

• Extension of Prepared Queries

• Transparent to Applications

• Determines Target for a Service Request

X

Failover Policies - Example

Types of Failover Policies

• Multiple options for configuring a failover policy

• Static Policy – fixed list of the order of failover

• Dynamic Policy – send to nearest DC based on RTT

• Hybrid Policy – use shortest RTT first, then use other DCs

• Failover Policies will try to return a LOCAL service first before
returning a service from a Federated datacenter

Configuring Failover Policies

{
"Name": "web-app-v64",
"Service": {
"Service": "web-app",
"Tags": ["v6.4"],
"Failover": {

"Datacenters": ["dc2", "dc3"]
}

}
}

My First Prepared Query + Failover Policy

Name of the Prepared Query

New Failover Policy

Static Failover Policy

If local isn't available, try
dc2 first, then dc3

Adding Failover Policies

{
"Name": "web-app-v64",
"Service": {
"Service": "web-app",
"Tags": ["v6.4"],
"Failover": {

"NearestN": 2,
}

}
}

My First Prepared Query + Failover Policy

Dynamic Failover Policy

If local isn't available, try 2
other datacenters starting

with the lowest RTT

{
"Name": "web-app-v64",
"Service": {
"Service": "web-app",
"Tags": ["v6.4"],
"Failover": {

"NearestN": 2
"Datacenters": ["dc2", "dc3"]

}
}

}

Hybrid Failover Policy

If local isn't available, try 2
other datacenters starting

with the lowest RTT. If that
fails, use dc2 and then dc3.

Each datacenter is only queried
one time during a failover

DNS

Prepared Query

Failover Policy

Compare Options for Querying Services

Simple, but Not Flexible

Dynamic, but Local

Ideal Solution for Multi-Cloud Apps

Using a Prepared Query

• Prepared Query can be used via API or DNS

• Default namespace = <name>.query.consul

• API uses the UUID for the prepared query after creation

• Executing the Prepared Query

• DNS: web-app-v64.query.consul

• API: https://consul.example.com:8500/v1/query/<uuid>/execute

Using a Prepared Query

• Order of Operations

• Local service is returned first

• If local is not available, failover policy is used

Objective 3a: Interpret a service registration

Objective 3b: Differentiate ways to register a single service

Objective 3c: Interpret a service configuration with health check

Objective 3d: Check the service catalog status from the output of
the DNS/API interface or via the Consul UI

Explain Consul Architecture

Difficulty Level

1 2 3 4 5

Register Services and Use Service Discovery

Objective 3e: Interpret a prepared query

Objective 3f: Use a prepared query

END OF
SECTION

	Slide Number 1
	Slide Number 2
	Register Services and Use Service Discovery
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

