
Describe Secure Introduction
of Vault Clients

What is Secret Zero?

• Secret zero is essentially the "first secret" needed to obtain other secrets
• Example: 1Password or LastPass

• In Vault, this is either the authentication credentials or a Vault token

• Once we have secret zero, we can potentially obtain other credentials. Unfortunately,
it also allows for an unauthorized user to elevate privileges in the organization

• The goal is to introduce secret zero in the most secure fashion but only when it's
needed for the application to use it

Secure Introduction Goals

1. Use unique credentials for each application instance provisioned

2. Limit your exposure if a credential is compromised

3. Stop hardcoding credentials within the application codebase

4. Reduce the TTL of the credentials used by applications and reduce long-lived creds

5. Distribute credentials securely and only at runtime

6. Use a trusted platform to verify the identities of clients

7. Employ a trusted orchestrator that is already authenticated to Vault to inject secrets

Secure Platform

1

Enable Auth Method
Create Auth Role

Vault Admin

</>
Application Server

(Vault Client)

Trusted Cloud Platform

Obtain Identity
Information

2
Authenticate – Provide Identity

Information
3

Validate Identity
Information

4

Return Vault Token
6

5 Match Auth to the
Auth Role

Rather than explicitly define
credentials, rely on a trusted
platform for authentication

Secure Orchestrator (CI/CD)

Application

1
Create Role

Vault Admin

2

Get Ro
le
-I
D

3
Docker Compose

Embed Role-ID in Image &

Developer
Docker Image

Orchestrator/
CI/CD Pipeline

4
Authenticate &

Generate Secret-ID

6

Deploy App &
Inject Secret-ID

5

Retrie
ve Im

age

You can use response
wrapping here for even

more security

Secure Orchestrator (Terraform)

Application Terraform

1 Provision New Workload

Generate New AppRole
Secret-ID2

3 Inject the Secret-ID

Authenticate with
AppRole creds4

Vault Agent – Auto Auth

Application Server

ApplicationVault Agent

1 Authenticate with Vault

Return the token2
Store the

client token

3

Read the
client token

4

Request secrets from Vault with client token5

Describe the Security
Implications of Running Vault
in Kubernetes

Running Vault on Kubernetes

• As a consultant, I'm seeing more and more customers looking to deploy Vault
on Kubernetes, including EKS, AKS, GKE, and OpenShift

• The easiest way to deploy Vault on Kubernetes is to use the official Helm chart

• The Vault security model assumes that Vault will be run on VMs/physical
hardware and not necessarily containers, so HashiCorp provides additional
recommendations specifically for containerization

TLS – End-to-End-Encryption

• Don't offload TLS at the load
balancer

• Ensures end-to-end encryption
from the client to the Vault node

• Use TLS certificates signed by a
trusted Certificate Authority (CA)

• Require TLS 1.2+

node-0 node-1 node-2

Persistent
Volume

Persistent
Volume

Persistent
Volume

Persistent
Volume Claim

Persistent
Volume Claim

Persistent
Volume Claim

vault-server-0 vault-server-1 vault-server-2

StatefulSet
Load Balancer Service

Disable Core Dumps

• Most commonly, Vault pods are scheduled
to run on a separate cluster to
reduce/eliminate shared resources

• Core dump files may include Vault's
encryption keys

• Ensure RLIMIT_CORE is set to 0 or use
the ulimit command with the core flag
(ulimit -c 0) inside the container to
ensure your container processes can't core
dump.

Ensure mlock is Enabled

• Memory lock ensures memory from a process on a Linux system isn't swapped to
disk. Additional configurations are needed for containerized deployments

• The process that starts the container that runs the mlock call must have
IPC_LOCK capabilities

Terminal

securityContext:
runAsNonRoot: true
runAsUser: 1000
capabilities:
add: ["IPC_LOCK"]

Container Supervisor

• If your container starts as root, the processes that might escape that container
will also have root on the node

• Mitigations can be used to prevent starting your container as root
• SecurityContextà runAsNonRoot
• PodSecurityContextà runAsNonRoot

Terminal

apiVersion: v1
kind: Pod
metadata:
name: hello-world

spec:
containers:
specification of the pod’s containers
...
securityContext:
readOnlyRootFilesystem: true
runAsNonRoot: true

Don't Run Vault as Root

• Vault is designed to run as an unprivileged user – regardless of the platform

• Elevated privileges can potentially expose the Vault process memory and allow
access to Vault encryption keys

