
Securely Configure Auto-Auth
and Token Sink

What is the Vault Agent?

The Vault Agent is a client daemon that runs alongside an application
to enable legacy applications to interact and consume secrets

Vault Agent provides several different features:
• Automatic authentication including renewal

• Secure delivery/storage of tokens (response wrapping)

• Local caching of secrets

• Templating

Legacy Applications – Auto-Auth

Legacy Application

?
Token

Invoke Vault API

Renew

Vault
Agent

Return Token

Authenticate

Vault Agent – Auto-Auth

• The Vault Agent uses a pre-defined auth method to authenticate to
Vault and obtain a token

• The token is stored in the "sink", which is essentially just a flat file
on a local file system that contains the Vault token

• The application can read this token and invoke the Vault API directly

• This strategy allows the Vault Agent to manage the token and
guarantee a valid token is always available to the application

Vault Agent - Auto Auth

Vault Agent supports many types of auth methods to authenticate and
obtain a token

Auth methods are generally the methods you'd associate with
"machine-oriented" auth methods

• AliCloud
• AppRole
• AWS
• Azure
• Certificate

• CloudFoundary
• GCP
• JWT
• Kerberos
• Kubernetes

Vault Agent Configuration File

auto_auth {
method "approle" {

mount_path = "auth/approle"
config = {

role_id_file_path = "<path-to-file>"
secret_id_file_path = "<path-to-file>"

}
}

sink "file" {
config = {

path = "/etc/vault.d/token.txt"
}

}
}

vault {
address = "http://<cluster_IP>:8200"

}

Auto-Auth
Configuration
(AppRole)

Sink
Configuration

Vault

Vault Agent - Sink

As of today, file is the only supported method of storing the auto-auth
token

Common configuration parameters include:
• type – what type of sink to use (again, only file is available)

• path – location of the file

• mode – change the file permissions of the sink file (default is 640)

• wrap_ttl = retrieve the token using response wrapping

Auth-Auth Security Concerns

Application

Token

Vault
Agent

Return Token

Authenticate

MITM Attack

Retrieve Token

Protecting the Token using Response Wrapping

To help secure tokens when using Auth-Auth, you can have Vault
response wrap the token when the Vault Agent authenticates

• Response wrapped by the auth method

• Response wrapped by the token sink

The placement of the wrap_ttl in the Vault Agent configuration
file determines where the response wrapping happens.

Response Wrapping at the Auth Method

Application

Token

Vault
Agent

Returns Response
Wrapped Token

Authenticate

Protects against MITM attacks

No token renewal capability

Response Wrapping at the Sink

Application

Token

Vault
Agent

Returns Token

Authenticate

Does NOT Protect against MITM attacks

Token renewal capabilityWrapped Token

Response-Wrapping the Token - Comparison

Response Wrapped by the Auth Method Response Wrapped by the Sink

Pros:
• Prevents man-in-the-middle attacks (MITM)
• More secure

Cons:
• Vault agent cannot renew the token

Pros:
• Allows the Vault agent to renew the token

and re-authenticate when the token expires

Cons:
• The token gets wrapped after it is retrieved

from Vault. Therefore, it is vulnerable to
MITM attack

Response-Wrapping the Token - Comparison

pid_file = "/home/vault/pidfile"

auto_auth {
method "kubernetes" {
wrap_ttl = "5m"
mount_path = "auth/kubernetes"
config = {

role = "example"
}

}
...

vault {
address = "http://<cluster_IP>:8200"

}

pid_file = "/home/vault/pidfile"

auto_auth {
method "kubernetes" {
mount_path = "auth/kubernetes"
config = {

role = "example"
}

}
sink "file" {

wrap_ttl = "5m"
config = {

path = "/etc/vault/token"
}

}
}

Response Wrapped by the Auth Method Response Wrapped by the Sink

END OF
SECTION

Vault Agent:
Configure Templating

Legacy Applications – Auto-Auth

Legacy Application

Token

Cannot Invoke Vault API

Vault
Agent

Return Token

Authenticate

How can legacy applications still take advantage of Vault for secrets?

Consul Template

• A standalone application that renders data from Consul or Vault
onto the target file system

• https://github.com/hashicorp/consul-template

• Despite its name, Consul Template does not require a Consul cluster to
operate

• Consul Template retrieves secrets from Vault

• Manages the acquisition and renewal lifecycle

• Requires a valid Vault token to operate

Create a templated file that
specifies the path and data

you want

Consul Template - Workflow

Execute Consul Template

Consul Template retrieves
data and renders to

destination file

The application reads the
new file at runtime that

includes secrets retrieved
from Vault

Step 1 Step 2 Step 3

Consul Template

Create a templated file

production:
adapter: postgresql
encoding: unicode
database: orders
host: postgres.hcvop.com
{{ with secret "database/creds/readonly" }}
username: "{{ .Data.username }}"
password: "{{ .Data.password }}"
{{ end }}

The path in Vault to read secrets from

The data to be retrieved and
consumed from the Vault response

Consul Template – Destination File (Result)

Destination File that application server will read at runtime

production:
adapter: postgresql
encoding: unicode
database: orders
host: postgres.hcvop.com
username: "v-vault-readonly-fm3dfm20sm2s"
password: "fjk39fkj49fks02k_3ks02mdz1s1"

Consul Template - Workflow

production:
adapter: postgresql
encoding: unicode
database: orders
host: postgres.hcvop.com
username: "v-vault-readonly-fm3dfm20sm2s"
password: "fjk39fkj49fks02k_3ks02mdz1s1"

production:
adapter: postgresql
encoding: unicode
database: orders
host: postgres.hcvop.com
{{ with secret "database/creds/readonly" }}
username: "{{ .Data.username }}"
password: "{{ .Data.password }}"
{{ end }}

1. Consul Template gets
secrets from Vault

2. Secrets are rendered to
the targeted output file

3. The application reads the file at
runtime and access the database

INPUT

OUTPUT

Vault Agent Templating

• To further extend the functionality of the Vault Agent, a subset of
the Consul-Template functionality is directly embedded into the
Vault Agent
• No need to install the Consul-Template binary on the application server

• Vault secrets can be rendered to destination file(s) using the Consul-
Template markup language
• Uses the client token acquired by the auto-auth configuration

Vault Agent Templating

Application Server/Container

Vault Agent

Sink

1. Auth with Vault

2. Returns Client Token

3. Store Token
in Sink

4. Read secrets based
on template TOKEN

Template

Output
File

Application
5. Render Secrets

to output file

Template Configuration

auto_auth {
method "approle" {

mount_path = "auth/approle"
...

sink "file" {
config = {

path = "/etc/vault.d/token.txt"
...

template_config {
exit_on_retry_failure = true
static_secret_render_interval = "10m"

}

template {
source = "/etc/vault/web.tmpl"
destination = "/etc/webapp/config.yml"

}

Auto-Auth
Configuration
(AppRole)

Sink
Configuration

Template
Configuration

Global Template
Configurations
(affects all templates)

END OF
SECTION

