V Vault

Securely Configure Auto-Auth

~ and Token Sink

(o

I What is the Vault Agent? ¥ vaut

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

The Vault Agent is a client daemon that runs alongside an application
to enable legacy applications to interact and consume secrets

Vault Agent provides several different features:
* Automatic authentication including renewal
» Secure delivery/storage of tokens (response wrapping)

* Local caching of secrets

 Templating

I Legacy Applications — Auto-Auth V vt

CERTIFIED *
OPERATIONS *
PROFESSIONAL

®

Legacy Application

Invoke Vaultg

Authenticate

Agent
% < d\4

Return Token

I Vault Agent — Auto-Auth V vt

OPERATIONS
PROFESSIONAL

®

 The Vault Agent uses a pre-defined auth method to authenticate to
Vault and obtain a token

 The token is stored in the "sink", which is essentially just a flat file
on a local file system that contains the Vault token

* The application can read this token and invoke the Vault API directly

* This strategy allows the Vault Agent to manage the token and
guarantee a valid token is always available to the application

I Vault Agent - Auto Auth V vt

OPERATIONS
PROFESSIONAL

®

Vault Agent supports many types of auth methods to authenticate and
obtain a token

Auth methods are generally the methods you'd associate with
"machine-oriented" auth methods

* AliCloud * CloudFoundary
* AppRole GCP
e AWS e JWT
e Azure * Kerberos
* Certificate * Kubernetes m
aey | EEEE

I Vault Agent Configuration File

auto_auth {
method "approle" ({
mount path = "auth/approle"
config = { AUtO'AUth
role id file path = "<path-to-file>" . .
secret id file path = "<path-to-file>" Conflguratlon

- (AppRole)

sink "file" ({
config = { .
path = "/etc/vault.d/token.txt" Sink
- Configuration

}

vault { —
address = "http://<cluster IP>:8200" I
}

I Vault Agent - Sink

As of today, £ile is the only supported method of storing the auto-auth
token

Common configuration parameters include:
e type —what type of sink to use (again, only £ile is available)
e path —location of the file
e mode —change the file permissions of the sink file (default is 640)

* wrap ttl =retrieve the token using response wrapping

ey -

-

I Auth-Auth Security Concerns V Vel

CERTIFIED *
OPERATIONS *
PROFESSIONAL

®

l—

Application

To ken

Vault
Agent

Authenticate

Return Token

g

MITM Attack

Retrieve Token

I Protecting the Token using Response Wrapping V vait

To help secure tokens when using Auth-Auth, you can have Vault
response wrap the token when the Vault Agent authenticates

« Response wrapped by the auth method

 Response wrapped by the token sink

The placement of the wrap ttl in the Vault Agent configuration
file determines where the response wrapping happens.

I Response Wrapping at the Auth Method W veui

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

Application

Token

Returns Response

/ Wrapped Token

No token renewal capability

Protects against MITM attacks

I Response Wrapping at the Sink V vau

CERTIFIED *
OPERATIONS *
PROFESSIONAL

®

Application

Token

Returns Token
T T Does NOT Protect against MITM attacks

Wrapped Token Token renewal capability

V Vault

CERTIFIED *
OPERATIONS %
PROFESSIONAL

I Response-Wrapping the Token - Comparison

®

Response Wrapped by the Auth Method Response Wrapped by the Sink

Pros: Pros:

* Prevents man-in-the-middle attacks (MITM) * Allows the Vault agent to renew the token

e More secure and re-authenticate when the token expires

Cons: Cons:

e Vault agent cannot renew the token * The token gets wrapped dafter it is retrieved
from Vault. Therefore, it is vulnerable to
MITM attack

ey -

-

I Response-Wrapping the Token -

Response Wrapped by the Auth Method

pid file = "/home/vault/pidfile"

auto_auth {

method "kubernetes" {
wrap ttl = "5m"
mount path = "auth/kubernetes"
config = {

role = "example"

}

}

vault {
address = "http://<cluster IP>:8200"

}

Comparison
Response Wrapped by the Sink

pid file = "/home/vault/pidfile"

auto_auth {
method "kubernetes" {
mount path = "auth/kubernetes"
config =
role = "example"

}
}
sink "file" {
wrap ttl = "5m"
config = {
path = "/etc/vault/token"

iy

\

END OF
SECTION

V Vault

Vault Agent:
Configure Templating

iy

I Legacy Applications — Auto-Auth V vt

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

How can legacy applications still take advantage of Vault for secrets?

é)
Legacy Application

coe Cannot Invoke Vault API

[</>

Authenticate

Return Token

I Consul Template v vau

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

A standalone application that renders data from Consul or Vault
onto the target file system

e https://github.com/hashicorp/consul-template

* Despite its name, Consul Template does not require a Consul cluster to
operate

e Consul Template retrieves secrets from Vault

* Manages the acquisition and renewal lifecycle

 Requires a valid Vault token to operate

I Consul Template - Workflow

— =

Step 1

\g

Create a templated file that
specifies the path and data
you want

— =

Step 2

)6(_)1;

Execute Consul Template

Consul Template retrieves
data and renders to
destination file

The application reads the
new file at runtime that
includes secrets retrieved
from Vault

V Vault

CERTIFIED
OPERATIONS

PROFESSIONAL

*
*

I Consul Template v vau

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

Create a templated file

production:
adapter: postgresqgl
encoding: unicode The path in Vault to read secrets from

database: orders

host: postgres.hcvop.com

{{ with secret "database/creds/readonly" }}
username: "{{ .Data.username }}"

password: "{{ .Data.password }}"

{{ end }}

The data to be retrieved and
consumed from the Vault response

V Vault

I Consul Template — Destination File (Result)

CERTIFIED *
OPERATIONS %
PROFESSIONAL

®

Destination File that application server will read at runtime

production:
adapter: postgresqgl
encoding: unicode
database: orders
host: postgres.hcvop.com
username: "v-vault-readonly-fm3dfm20sm2s"

password: "fjk39fk3j49fks02k 3ks0Z2mdzlsl"

I Consul Template - Workflow

production:
adapter:
encoding:
database:
host:

postgresqgl
unicode
orders

—

postgres.hcvop.com

username:
password:
{{ end }}

"{{

1. Consul Template gets "y

secrets from Vault

3. The application reads the file at
runtime and access the database

{{ with secret "database/creds/readonly" }}
.Data.username }}"
.Data.password }}"

V Vault

CERTIFIED *
OPERATIONS %
PROFESSIONAL

CONSUL
TEMPLATE

®

2. Secrets are rendered to
the targeted output file

OUTPUT

production:
adapter:
encoding:
database:
host: postgres.hcvop.com
username: "v-vault-readonly-fm3dfm20sm2s"
password: "fjk39fkj49fks02k 3ks02mdzlsl"

postgresqgl
unicode
orders

I Vault Agent Templating V vaut

OPERATIONS
PROFESSIONAL

®

To further extend the functionality of the Vault Agent, a subset of

the Consul-Template functionality is directly embedded into the
Vault Agent

* No need to install the Consul-Template binary on the application server

Vault secrets can be rendered to destination file(s) using the Consul-
Template markup language

 Uses the client token acquired by the auto-auth configuration

I Vault Agent Templating V vaut

CERTIFIED *
OPERATIONS %

PROFESSIONAL

®

Application Server/Container

Vault Agent EJ

Template

Application

5. Render Secrets

to output file ‘ ==
DA< H—

Output
File

1. Auth with Vault

2. Returns Client Token

4. Read secrets based

N\
on template \,
3. Store Token

in Sink Sink

I Template Configuration AL

CERTIFIED *
OPERATIONS %
PROFESSIONAL

auto_auth { Auto-Auth c
method "approle" {)

mount_Path = "auth/approlen Conflguratlon
(AppRole)

sink "file" {
config = {

path "/etc/vault.d/token. txt" SH1k

Configuration

template config { Global Template
exit on retry failure = true

static_secret render interval = "10m" Configurations

} (affects all templates)

template ({

source = "/etc/vault/web.tmpl"

destination = "/etc/webapp/config.yml"
}

iy

\

END OF
SECTION

