
Interpret Vault Identity
Entities and Groups

Vault Entities

• Vault creates an entity and attaches an alias to it if a corresponding
entity doesn't already exist.
• This is done using the Identity secrets engine, which manages internal

identities that are recognized by Vault

• An entity is a representation of a single person or system used to log
into Vault. Each has a unique value. Each entity is made up of zero or
more aliases

• Alias is a combination of the auth method plus some identification.
It is a mapping between an entity and auth method(s)

Vault Entities

UserPass: jsmith

Entity_ID: b81de864-75fa-5619-1fca-ddd72bbe5b29

UserPass

accounting

Julie Smith
Finance Specialist alias entity_id

policy

department: finance
office: San Francisco
team: accounts-payable

metadata

Vault Entities

UserPass: jsmith
Entity_ID: b81de864-75fa-5619-1fca-ddd72bbe5b29

UserPass
LDAP
GitHub

accounting

Auth
Options:

department: accounting
sub-team: accounts-payable

LDAP: jsmith@example.com
Entity_ID: e93d24b2a-b894-0998-43ce-4294cb9ea9b

financedepartment: finance
team: management

GitHub: jsmith22
Entity_ID: 4c9ed3482-4894-ced9-a1b2-90344be93aa

accounts payablelocation: us
sales-region: west

Finance Specialist
Julie Smith

Vault Entities

• An entity can be manually created to map multiple entities for a
single user to provide more efficient authorization management

• Any tokens that are created for the entity inherit the capabilities that
are granted by alias(es).

LDAP

Userpass

GitHub
New Entity

Julie Smith
LDAP
Userpass
GitHub

Aliases

Vault Entities

Name: Julie Smith
Entity_ID: e48de234-58fa-0093-5fde-e5b99abe8b33
Policy: management

Aliases:

LDAP: jsmith@example.com
Entity_ID: e93d24b2a-b894-0998-43ce-4294cb9ea9b
Policy: accounting

GitHub: jsmith22
Entity_ID: 4c9ed3482-4894-ced9-a1b2-90344be93aa
Policy: finance

Entity

Aliases

UserPass: jsmith
Entity_ID: b81de864-75fa-5619-1fca-ddd72bbe5b29

Vault Entities

Name: Julie Smith
Entity_ID: e48de234-58fa-0093-5fde-e5b99abe8b33
Policy: management

Aliases:

LDAP: jsmith@example.com
Entity_ID: e93d24b2a-b894-0998-43ce-4294cb9ea9b
Policy: accounting

GitHub: jsmith22
Entity_ID: 4c9ed3482-4894-ced9-a1b2-90344be93aa
Policy: finance

jsmith@example.com

LDAP

1. Authenticate with LDAP credentials

3. Return a Vault token

2. Validate with LDAP

TOKEN

Policies
accounting

management

Token inherits
capabilities granted
by both policies

$ vault write identity/entity name="Julie Smith" \
policies="it-management" \
metadata="organization"="HCVOP, Inc" \
metadata="team"="management"

TERMINAL

Create an Entity

Add GitHub auth as an alias
$ vault write identity/entity-alias name="jsmith22" \

canonical_id=<entity_id> \
mount_accessor=<github_auth_accessor>

Add LDAP auth as an alias
$ vault write identity/entity-alias \

name="jsmith@hcvop.com" \
canonical_id=<entity_id> \
mount_accessor=<ldap_auth_accessor>

TERMINAL

Add an Alias to an Entity

Vault Groups

• A group can contain multiple entities as its members.
• A group can also have subgroups.
• Policies can be set on the group and the permissions will be granted to all

members of the group.

Name: Finance_Team
Policy: finance

Members:

Entity_ID: e93d24b2a-b894-0998-43ce-4294cb9ea9b
Policy: management

Entity_ID: 4c9ed3482-4894-ced9-a1b2-90344be93aa
Policy: accounts_payable

Vault Groups

Name: Finance_Team
Policy: finance

Members:

Name: Maria Shi
Entity_ID: 4c9ed3482-4894-ced9-a1b2-90344be93aa
Policy: accounts_payable
Entity Aliases:

Username: maria.shi
Policy: base-user

Name: John Lee
Entity_ID: e93d24b2a-b894-0998-43ce-4294cb9ea9b
Policy: management
Entity Aliases:

Username: john.lee
Policy: super-user

TOKEN

Policies
super-user

management
finance

Token inherits
capabilities granted by
alias, entity, and the
group

Vault Groups

Internal Group External Group

Groups created in
Vault to group

entities to propagate
identical permissions

Groups which Vault
infers and creates

based on group
associations coming
from auth methods

Created Manually
Created Manually or

Automatically

Vault Groups
Internal Groups

• Internal groups can be used to easily manage permissions for entities
• Frequently used when using Vault Namespaces to propagate permissions down to

child namespaces
• Helpful when you don't want to configure an identical auth method on every

single namespace

Finance

Group: team-finance

Type: external
Namespace: /
Mount accessor: auth_oidc_3d203e4
Group alias: finance

Root Namespace

Group: team-finance

Type: internal
Namespace: finance
Members: team-finance
Policy: finance

Child Namespace

Vault Groups
External Groups

• External groups are used to set permissions based on group membership from
an external identity provider, such as LDAP, Okta, or OIDC provider.

• Allows you to set up once in Vault and continue manage permissions in the
identity provider.
• Note that the group name must match the group name in your identity provider

Group: team-finance

Members:
• Maria
• John
• Mohammed

Active Directory

Group: team-finance

Type: external
Policy: finance

HashiCorp Vault

END OF
SECTION

Vault Policies

admin

admin

DevOps Engineer

DevOps Engineer

user

CI/CD Pipeline

CI/CD Pipeline

Packer

Terraform

Web Application

CI/CD PipelineAuditor

How Do We Determine Who Should Access Secrets

• Vault policies provide operators a way to permit or deny access to
certain paths or actions within Vault (RBAC)

• Gives us the ability to provide granular control over who gets access
to secrets

• Policies are written in declarative statements and can be written using
JSON or HCL

• When writing policies, always follow the principal of least privilege

• In other words, give users/applications only the permissions they
need

Vault Policies

• Policies are Deny by Default (implicit deny) - therefore you must explicitly grant to
paths and related capabilities to Vault clients

No policy = no authorization

• Policies support an explicit DENY that takes precedence over any other permission

• Policies are attached to a token. A token can have multiple policies

• Policies are cumulative and capabilities are additive

Dev Policy

Ops Policy
Dev

Policy

Ops
Policy

Token

Vault Policies

• root policy is created by default – superuser with all permissions

• You cannot change nor delete this policy

• Attached to all root tokens

• default policy is created by default – provides common permissions

• You can change this policy, but it cannot be deleted

• Attached to all non-root tokens by default (can be removed if needed)

Out of the Box Policies

Terminal

$ vault policy list
default
root

Terminal

$ vault policy read default

Allow tokens to look up their own properties
path "auth/token/lookup-self" {

capabilities = ["read"]
}

Allow tokens to renew themselves
path "auth/token/renew-self" {

capabilities = ["update"]
}

Allow tokens to revoke themselves
path "auth/token/revoke-self" {

capabilities = ["update"]
}

Allow a token to look up its own capabilities on a path
path "sys/capabilities-self" {

capabilities = ["update"]
}
………

Terminal

$ vault policy read root
No policy named: root

Out of the Box Policies

root policy

path "*" {
capabilities = ["read","create","update","delete","list","sudo"]

}

The root policy does not contain any rules but can do anything within
Vault. It should be used with extreme care.

If it did have rules, it would probably look something like this….

Out of the Box Policies

Managing Policies
Using the CLI

Use the vault policy command
• delete
• fmt
• list
• read
• write

Terminal

$ vault policy write admin-policy /tmp/admin.hcl
Success! Uploaded policy: admin-policy

Terminal

$ vault policy list
admin-policy
default
root

Managing Policies in Vault
Command Line Interface (CLI)

Command Line Interface (CLI)

vault policy write webapp /tmp/webapp.hcl

Type of Vault
object you want

to work with

Subcommand Define the name
of the policy you
want to create

The location of the file
containing the pre-written

policy

Managing Policies in Vault

TERMINAL

Command Line Interface (CLI)

$ vault policy write webapp -<< EOF
path "kv/data/apps/*" {
capabilities = ["read","create","update","delete"]

}
path "kv/metadata/*" {
capabilities = ["read","create","update","list"]

}
EOF

Managing Policies in Vault

Managing Policies
Using the UI

User Interface (UI)

Create a New Policy

Click to Download/View/Edit Policy

Click to View/Edit/Delete Policy

Managing Policies in Vault

Managing Policies
Using the API

HTTP API

Creating a new Vault policy
• Method: POST

Terminal

$ curl \
--header "X-Vault-Token: hvs.bCEo8HFNIIR8wRGAzwUk" \
--request PUT \
--data @payload.json \
http://127.0.0.1:8200/v1/sys/policy/webapp

Create
Vault
Policy

Don't forget you need
a valid token

API Endpoint Name of the new policy

Managing Policies in Vault

Payload File:

HTTP API

{
"policy": "path \"kv/apps/webapp\" { capabilities… "

}

payload.json

Managing Policies in Vault

Anatomy of a Vault
Policy

• Remember: Everything in Vault is path based

• Policies grant or forbid access to those paths and operations

path "<path>" {
capabilities = ["<list of permissions>"]

}

Two key parts to a Vault policy:

Anatomy of a Vault Policy

path "<path>" {

capabilities = ["<list of permissions>"]

}

path "<path>" {
capabilities = ["<list of permissions>"]

}

path "<path>" {

capabilities = ["<list of permissions>"]

}

Anatomy of a Vault Policy

path "kv\data\apps\jenkins" {

capabilities = ["read","update","delete"]

}

path "sys/policies/*" {
capabilities = ["create","update","list","delete"]

}

path "aws/creds/web-app" {

capabilities = ["read"]

}

Anatomy of a Vault Policy

Vault Polices - Path

• Path: we already know what a path is
• see Vault Architecture and Pathing Structure in Section 1 for a review

• Examples of paths:
• sys/policy/vault-admin
• kv/apps/app01/web
• auth/ldap/group/developers
• database/creds/prod-db
• secrets/data/platform/aws/tools/ansible/app01
• sys/rekey

Vault Policies - Path

secrets/data/platform/aws/tools/ansible

Path where the
secrets engine

is mounted

Path of an Object

Required
for a KV v2

secrets
engine

Where the
key/value pairs are

stored and
retrieved

Higher-Level Paths
(data could be stored at each

one if needed)

The Details are in the Path

• Root-Protected Paths
• Many paths in Vault require a root token or sudo capability to use

• These paths focus on important/critical paths for Vault or plugins

• Examples of root-protected paths:
• auth/token/create-orphan (create an orphan token)
• pki/root/sign-self-issued (sign a self-issued certificate)
• sys/rotate (rotate the encryption key)
• sys/seal (manually seal Vault)
• sys/step-down (force the leader to give up active status)

https://learn.hashicorp.com/tutorials/vault/policies#root-protected-api-endpoints

Vault Policies - Path

• Examples of root-protected paths:
• sys/rotate (rotate the encryption key)
• sys/seal (manually seal Vault)
• sys/step-down (force the leader to give up active status)

admin-policy.hcl

path "sys/rotate" {
capabilities = ["sudo"]

}
path "sys/seal" {
capabilities = ["sudo"]

}
path "sys/step-down" {
capabilities = ["sudo"]

}

Vault Policies - Path

Vault Polices - Capabilities

• Capabilities define what can we do?
• Capabilities are specified as a list of strings (yes, even if there's just one)

Capability HTTP Verb

create POST/PUT

read GET

update POST/PUT

delete DELETE

list LIST

Capability Description
sudo Allows access to paths that are root-protected

deny Disallows access regardless of any other defined
capabilities

create = if the key does not yet exist
update = if the key exists and you want to replace/update it

Vault Policies - Capabilities

• Create – create a new entry

• Read – read credentials, configurations, etc

• Update – overwrite the existing value of a secret or configuration

• Delete – delete something

• List – view what's there (doesn't allow you to read)

• Sudo – used for root-protected paths

• Deny – deny access – always takes precedence over any other capability

Note: Write is not a valid capability

Vault Policies - Capabilities

path "database/creds/dev-db01" {

capabilities = ["read"]

}

path "kv/apps/dev-app01" {

capabilities = ["create", "read", "update", "delete"]

}

Requirement:
• Access to generate database credentials at database/creds/db01
• Create, Update, Read, and Delete secrets stored at kv/apps/dev-app01

One Policy
With

Mulitple Rules

Vault Policy - Example

Requirements:
• Access to read credentials after the path

kv/apps/webapp

• Deny access to kv/apps/webapp/super-secret

--kv
|--apps

|--webapp
|--super_secret
|--api_token
|--host_name

|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read"]

}

path "kv/apps/webapp/super_secret" {

capabilities = ["deny"]

}

Vault Policy - Example

--kv
|--apps

|--webapp
|--super_secret
|--api_token
|--host_name

|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read"]

}

path "kv/apps/webapp/super_secret" {

capabilities = ["deny"]

}

Q: Does this policy permit access to
kv/apps/webapp?

A: No, because the policy only permits access to secrets AFTER kv/apps/webapp

Pop Quiz

--kv
|--apps

|--webapp
|--mid-tier
|--database

|--cloud
|--aws

|--prod
|--gcp

|--dev

Tree

path "kv/apps/webapp/*" {

capabilities = ["read", "list"]

}

Q: Does this policy permit you to
browse to kv/apps/webapp in the UI?

A: No, because the policy only permits list at the listed path, not the paths
leading up to the desired path

LIST

LIST

Pop Quiz

Customizing the Path

• The glob (*) is a wildcard and can only be used at the end of a path

• Can be used to signify anything "after" a path or as part of a pattern

• Examples:

• secret/apps/application1/* - allows any path after application1

• kv/platform/db-* - would match kv/platform/db-2 but not kv/platform/db2

Using the * to Customize the Path

secret/apps/application1/*

Path where the
secrets engine

is mounted

Path created on the secrets engine
called secret

Apply capabilities on
anything AFTER

application1

The Details are in the Path

secret/apps/application1/*

ü secret/apps/application1/db

ü secret/apps/application1/data/production

ü secret/apps/application1/web-app

ü secret/apps/application1/keys/api_key

Paths that Match

Path must start with this – nothing else Must ALSO include something
beyond application1

ꓫ secret/apps/database

ꓫ secret/apps/application2

ꓫ secret/data/front-end

ꓫ kv/secret/app/application

Paths that Do Not Match

Does it Match?

path "secret/apps/application1/*" {
capabilities = ["read"]

}

Given the policy:

secret/apps/application1

Can I read from the following path?

No, because the policy only permits read access for anything AFTER
application1, not the path secret/apps/application1 itselfAnswer:

required

Pop Quiz

path "secret/apps/application1/*" {
capabilities = ["read"]

}

path "secret/apps/application1" {
capabilities = ["read"]

}

If we wanted to ALSO read from secret/apps/application1,
the policy would look like this:

NEW

Pop Quiz

• The plus (+) supports wildcard matching for a single directory in the
path

• Can be used in multiple path segments (i.e., secret/+/+/db)

• Examples:
• secret/+/db - matches secret/db2/db or secret/app/db

• kv/data/apps/+/webapp – matches the following:

• kv/data/apps/dev/webapp

• kv/data/apps/qa/webapp

• kv/data/apps/prod/webapp

Using the + to Customize the Path

secret/data/+/apps/webapp

Path where the
secrets engine

is mounted

Remaining pathCan be ANY
value

Used for KV V2
Secrets Engine

The Details are in the Path

secret/data/+/apps/webapp

ü secret/data/production/apps/webapp

ü secret/data/dev1/apps/webapp

ü secret/data/team-abc/apps/webapp

ü secret/data/456/apps/webapp

Paths that Match

Path must start with
this – nothing else

Can be
ANY value

ꓫ secret/data/apps/webapp

ꓫ secret/app123/dev

ꓫ secret/data/front-end/apps

ꓫ secret/dev/apps/webapp

Paths that Do Not Match

Path must end with
this – nothing else

Does it Match?

path "secret/+/+/webapp" {
capabilities = ["read", "list"]

}

path "secret/apps/+/team-*" {
capabilities = ["create", "read"]

}

Combining the * and + in a policy

Using multiple + in a policy

Example Policy

• Use variable replacement in some policy strings with values available
to the token

• Define policy paths containing double curly braces: {{<parameter>}}

path "secret/data/{{identity.entity.id}}/*" {
capabilities = ["create", "update", "read", "delete"]

}

path "secret/metadata/{{identity.entity.id}}/*" {
capabilities = ["list"]

}

Example: Creates a section of the key/value v2 secret engine to a specific user

ACL Templating

Parameter Description

identity.entity.id The entity's ID

identity.entity.name The entity's name

identity.entity.metadata.<<metadata key>> Metadata associated with the entity for the given key

identity.entity.aliases.<<mount accessor>>.id Entity alias ID for the given mount

identity.entity.aliases.<<mount accessor>>.name Entity alias name for the given mount

identity.entity.aliases.<<mount accessor>>.metadata.<<metadata key>> Metadata associated with the alias for the given mount and metadata key

identity.groups.ids.<<group id>>.name The group name for the given group ID

identity.groups.names.<<group name>>.id The group ID for the given group name

identity.groups.names.<<group id>>.metadata.<<metadata key>> Metadata associated with the group for the given key

identity.groups.names.<<group name>>.metadata.<<metadata key>> Metadata associated with the group for the given key

https://learn.hashicorp.com/tutorials/vault/policy-templating?in=vault/policies

ACL Templating

Working with Policies

$ vault token create -policy="web-app"

Key Value
--- -----
token s.7uBlZwXSxOg31uGXIUetEdXD
token_accessor 18r88muoe3x1xEqVqXdlTMwJ
token_duration 768h
token_renewable true
token_policies ["default" "web-app"]
identity_policies []
token_policies [default web-app]

Create a new token with "web-app" policy attached:

Every token gets the default policy
plus the assigned policy or policies

What Policies are Attached?

TERMINAL

$ vault token create -policy="web-app"

Authenticate with the newly generated token
$ vault login <token>

Make sure that the token can read
$ vault read secret/apikey/Google

This should fail
$ vault write secret/apikey/Google key="ABCDE12345"

Request a new AWS credentials
$ vault read aws/creds/s3-readonly

Test to make sure the policy fulfills the requirements

Example Requirements:

• Clients must be able
to request AWS
credential granting
read access to a S3
bucket

• Read secrets from
secret/apikey/Google

Testing Policies

• Permissions for Vault backend functions live at the sys/ path

• Users/admins will need policies that define what they can do within
Vault to administer Vault itself

• Unsealing

• Changing policies

• Adding secret backends

• Configuring database configurations

Administrative Policies

Configure License
path "sys/license" {

capabilities = ["read", "list", "create", "update", "delete"]
}
Initialize Vault
path "sys/init" {

capabilities = ["read", "update", "create"]
}
Configure UI in Vault
path "sys/config/ui" {

capabilities = ["read", "list", "update", "delete", "sudo"]
}
Allow rekey of unseal keys for Vault
path "sys/rekey/*" {

capabilities = ["read", "list", "update", "delete"]
}
Allows rotation of master key
path "sys/rotate" {

capabilities = ["update", "sudo"]
}
Allows Vault seal
path "sys/seal" {

capabilities = ["sudo"]
}

Licensing

Setup New Vault Cluster

Configure UI

Rotate Keys

Seal Vault

Administrative Policies

END OF
SECTION

Understand Sentinel Policies

What is Sentinel?

Sentinel is an embeddable policy as code
framework to enable fine-grained, logic-based
policy decisions that can be extended to source
external information to make decisions.

Policy as Code Fine Grained, Conditioned-Based Embedded

Enforcement Levels External Information Multi-Cloud Compatible

Treat policy like an application —
version control, pull review, and

automate tests. Use programming
constructs to determine policy
decisions beyond the limited

constraints of typical ACL systems.

Treat policy like an application —
version control, pull review, and

automate tests. Use programming
constructs to determine policy
decisions beyond the limited

constraints of typical ACL systems.

Sentinel is embedded to enable policy
enforcement in the data path to
actively reject violating behavior

instead of passively detecting.

Advisory, soft-mandatory, and hard-
mandatory levels allow policy writers

to warn on or reject offending
behavior.

Sentinel can permit or deny actions
based upon external information

available to the token, such as time, IP
address, requested path, etc.

Ensure infrastructure changes are
within business and regulatory policy

on every infrastructure provider.

Multi-Platform

Sentinel is NOT just a Vault feature.
It is available in the Enterprise versions of other HashiCorp Products.

Types of Sentinel Policies

Role Governing Policies (RGPs)

Endpoint Governing Policies (EGPs)

• Sentinel policies that are tied to tokens, identity entities, or identity groups

• Access to rich set of controls across various aspects of Vault

• Sentinel policies that are tied to paths instead of tokens

• Access to as much request information as possible
• Can take an effect even on unauthenticated paths (e.g., login paths)

Anatomy of a Sentinel Policy

• Import – access to reusable libraries to import information or use features

• Main – (required) the main rule to be evaluated

• Rule – describes a set of conditions resulting in either true or false

• Variables – optional, dynamically typed variable

import "<library>"
<variable> = <value>
<name> = rule { <condition_to_evaluate> }
main = rule {

<condition_to_evaluate>
}

Imports

https://docs.hashicorp.com/sentinel/imports

Example of Imports that can be used with Sentinel:
• base64 – encode & decode Base64 values
• decimal – provides functions for operating on numbers as decimals
• http – enables the use of HTTP-accessible data outside of the runtime in Sentinel rules
• json – parse and access a JSON document
• runtime – contains various information about Sentinel runtime
• sockaddr – enables working with IP addresses
• strings – enables common string operations
• time – provides access to execution time and time functions
• types – ability to parse an object's type
• units – provides access to quick calculations for various byte units
• version – used to parse versions and version constraints

These allow fine-grained
controls over your Vault

environment

main = rule {
identity.entity.name is "jeff" or
identity.entity.id is "fe2a5bfd-c483-9263-b0d4-f9d345efdf9f" or
"sysops" in identity.groups.names or
"14c0940a-5c07-4b97-81ec-0d423accb8e0" in keys(identity.groups.by-id)

}

Sentinel Policy Example - RGP

Only allow a specific entity or groups

If the user "Jeff" is deleted and recreated, the match will fail because we're also enforcing the entity ID

import "time"

main = rule when not request.unauthenticated {
time.load(token.creation_time).unix >

time.load("2022-12-25T00:00:01Z").unix
}

Sentinel Policy Example - EGP

Disallow all previously-generated tokens based on date:
• You could apply this EGP to the "*" endpoint

Could be used as a "break-glass" scenario where previous tokens were compromised

import "sockaddr"
import "mfa"
import "strings"

We expect logins to come only from a specific private IP range
cidrcheck = rule {

sockaddr.is_contained(request.connection.remote_addr, "10.0.23.0/16")
}

Require Ping MFA validation to succeed
ping_valid = rule {

mfa.methods.ping.valid
}

main = rule when request.path is "auth/ldap/login" {
ping_valid and cidrcheck

}

Sentinel Policy Example - EGP

Must also pass both rules

Sets the scope of policy

Enforcement Levels

Enforcement Level Description

Advisory The policy is allowed to fail

Soft Mandatory The policy must pass unless an override is specified

Hard Mandatory The policy muss pass no matter what

Sentinel offers three different enforcement levels that can be set
per Sentinel policy:

To override a Sentinel policy (soft mandatory), use the –policy-override flag when
executing the Vault command

Deploy Sentinel Policies via UI

Deploy RGP Sentinel Policy via UI

Deploy EGP Sentinel Policy via UI

Policy Evaluation

Request is Unauthenticated

Evaluate the token's ACL policies

Evaluate RGPs attached to the token

Evaluate EGPs on requested path

Request Denied

No

Permission
Granted

Permission
Granted

Access is Permitted

Start

Yes

No

No

No

END OF
SECTION

Define Control Groups and
Describe their Basic Workflow

Control Groups

• Control groups add an additional authorization requirement on
configured paths

• When a control group is created, the following will occur:
1. The client makes a request to a path as normal

2. Vault returns a wrapping token – rather than the requested secrets

3. The authorizers defined in the control group policy must approve the request

4. Once all authorizations are satified, the client can unwrap the secrets

Control Group Factors

• Control Group requirements can be specified in either ACL policies
or within a Sentinel policy

• Currently, the only supported Control Group factor is an Identity Group
• An authorizer must belong to a specific identity group

• The policy will define the group, or groups, who are approvers for the
requested path

Control Group Workflow

1. GET kv/data/customers/orders

2. Response

"wrap_info": {
"token": "hvs.CAESIPvNkRgluUVNT_ccLsm6aZ-",
"accessor": "cqL9n3r4kMeIQZekoLrMWMWN",
"ttl": 300,
...

Policy with Group Control on
kv/data/customers/orders

Account Managers

Here's my accessor. Please approve.
cqL9n3r4kMeIQZekoLrMWMWN

3. Share Accessor with Managers for Approval

Control Group Workflow

5. vault unwrap hvs.CAESIPvNkRg..

6. Response

"data": {
"order": "5830375749202",
"customer": "HCVOP9943250D2",
"data": "25-12-2002",
"creditcard": "1234-5678-0987-6553",
...

Policy with Group Control on
kv/data/customers/orders

Account Managers

4. Authorize

4. Authorize

Note: If the authorization can not be
satisfied, the token is revoked

Control Groups in Vault Policies

path "kv/data/customers/orders" {
capabilities = ["read"] Regular ACL Policy

Control Group
control_group = {

factor "acct_manager" {
identity {

group_names = ["account-managers"]
approvals = 2

}
}

}
}

We need two account
managers to approve this
request

Control Groups in Sentinel Policies (EGP)

import "controlgroup"

control_group = func() {
numAuthzs = 0
for controlgroup.authorizations as authz {

if "account-managers" in authz.groups.by_name {
numAuthzs = numAuthzs + 1

}
}
if numAuthzs >= 2 {

return true
}
return false

}

main = rule {
control_group()

}

We need two account
managers to approve
this request

Deploy this EGP against
kv/data/customers/orders

$ vault login hvs.CAESIA7Y-LwSxnE926onQwdxIUF7w7KJ5-
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token hvs.CAESIA7Y-LwSxnE926onQwdxIUF7w7KJ5-
token_accessor 72N0rIUJDuMy4LWiTbUhh8n6
token_duration 767h59m51s
token_renewable true
token_policies ["ctl-grp-cust-data" "default"]
identity_policies []
policies ["ctl-grp-cust-data" "default"]

bk~$ vault kv get kv/customers/orders
Key Value
--- -----
wrapping_token: hvs.H5IATHFed2Aqk5RSvW1eEF4d
wrapping_accessor: vGlHUUfodJLCUho87VZjsCb4
wrapping_token_ttl: 24h
wrapping_token_creation_time: 2022-12-25 10:00:31 -0400 EDT
wrapping_token_creation_path: kv/data/customers/orders

Control Groups in Action (CLI)

Requested data from KV store

I authenticated with a
token tied to a policy
with a Control Group

Got wrapping token and
accessor instead of data

TERMINAL

Authorizer Actions (Account Manager)

kv/data/customers/orders

kv/data/customers/orders

Not yet Authorized

Unwrap the Secrets After Approvals

Describe and Interpret Multi-
Tenancy with Namespaces

What are Namespaces?

• Allows organizations to provide “Vault as a Service”
• Provides isolated environments on single Vault environment
• Multi-tenant but centralized management
• Allows delegation of Vault of responsibilities

• Available in all versions of Vault Enterprise

• Each namespace can have its own:
• Policies
• Auth Methods
• Secrets Engines
• Tokens
• Identities

What are Namespaces?

• The default namespace is ‘root’

• Namespaces are created in a hierarchical fashion

• Just like root, paths and ACLs are relative to the namespace, making
easier to re-use commands and policies across multiple namespaces

• Tokens are only valid in a single namespace, but you can create an entity
who has access to other namespaces

Namespaces

Namespace Namespace Namespace

Secrets Engine

Policies

Auth Method

Secrets Engine

Policies

Auth Method

Secrets Engine

Policies

Auth Method

Child Namespace

Secrets Engine

Policies

Auth Method

development/

development/team1

Secrets Engine

Policies

Auth Method

root/

Production Vault Cluster

Assigning Namespaces

Cloud-Team Namespace

Policies

Auth MethodsSecrets Engines

Engineering Namespace

Policies

Auth MethodsSecrets Engines

Developer Namespace

Policies Auth Methods

Secrets Engines

Cloud Engineers DevOps Engineers Core Developers

Engineering Namespace

Cloud-Team Namespace

Vault Cluster

Administrative Delegation

• Secrets Engines
• Policies
• Auth Methods

Responsible for Dev:

Responsible for:
• Cluster Nodes
• Audit Devices
• Root Namespace
• Storage Backend
• Vault Upgrades

Developer Namespace

Developer
Namespace

Admin

Vault
Engineers

Secrets Engines

Policies

Auth Methods

Authenticating to Namespaces

Root Namespace

Cloud-Team Namespace Engineering Namespace

OIDC
Auth Method

Userpass
Auth Method

AWS
Auth Method

Azure
Auth Method

Common Namespace Commands

$ vault namespace create <namespace>

$ vault namespace list

$ vault namespace delete <namespace>

Create Namespace

List Namespaces

Delete a Namespace

Using Namespaces on the CLI

$ vault kv get –namespace=<namespace> kv/data/sql/prod

$ export VAULT_NAMESPACE=<namespace>

Reference a Namespace on the CLI when running a command

Set Namespace Environment Variable – then run commands as normal

Referencing Namespaces in the API

Add the API Header = X-Vault-Namespace

curl \
-header "X-Vault-Token: "hvs.a83b50ed2aa548212" \
-header "X-Vault-Namespace: "development/" \
-request GET \
https://vault.hcvop.com:8200/v1/kv/data/sql/prod

Referencing Namespaces in the API

Add the Namespace to the API Endpoint

curl \
-header "X-Vault-Token: "hvs.CAESIA7Y-LwSxnE926onQwdxIUF7" \
-request GET \
https://vault.hcvop.com:8200/v1/development/kv/data/sql/prod

Writing Policies for Namespaces

Root Namespace

Cloud-Team Namespace

database/

path = "cloud-team/database/creds/prod-db" {
capabilities = ["read"]

}

The path is relative to the Namespace

path = "database/creds/prod-db" {
capabilities = ["read"]

}

Authenticating to a Namespace via UI

Authenticating to a Namespace via CLI

$ vault login -namespace=cloud-team -method=userpass username=bryan
Password (will be hidden):

Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token
hvs.CAESIM5RikdMODs5nZrFrsecgqUKggrnXgSOZrkvXMtUXnwKGicKImh2cy5oOXlrNWFQRHNQM1Y4M
G5xZkF0VFB6dVcubjU3eTYQwAM
token_accessor rOH7HYtHmZ6fDX4z0RCJVxbF.n57y6
token_duration 768h
token_renewable true
token_policies ["default"]
identity_policies []
policies ["default"]
token_meta_username bryan

Enabling an Auth Method In a Namespace

$ vault namespace create cloud-team
Key Value
--- -----
id n57y6
path cloud-team/

Enable userpass auth method using the namespace flag
$ vault auth enable -namespace=cloud-team userpass
Success! Enabled userpass auth method at: userpass

Enable aws auth method using environment variable
$ export VAULT_NAMESPACE=cloud-team
$ vault auth enable aws

Working with Namespaces in the UI

