

What is Jenkins

Jenkins is one of the most popular automation

tool used worldwide for continuous integration

and continuous delivery.

Jenkins is a free and open-source automation

server that enables developers to build, integrate,

and test code automatically as soon as it is

committed to the source repository.

Challenges

Slower Releases

Manual Builds

Non-repeatable

processes

No automations

Why Jenkins?

When working on a project with different teams,

developers often face issues with different teams using

different CI tools, version management, and other tools.

Setting up a CI/CD toolchain for each new project will lead

to certain challenges like:

• Slower Releases

• Manual Builds

• Non-repeatable processes

• No Automations

Solution

Automated builds Automated Tests

Automated CI/CD

pipelines

CI CD

Automated

deployments

Ability to install

Jenkins locally

Jenkins support

and Plugins

Why Jenkins?

Jenkins is the solution to those challenges.

It provides:

• Automated builds

• Automated Tests

• Automated CI/CD pipelines

• Automated deployments

• Ability to install Jenkins locally

• Jenkins support and Plugins

Open-source 1000+ plugins Free Paid, Enterprise

Why Jenkins?

Free!

Jenkins is free and you don’t have to pay for anything.

Jenkins can be hosted on a Virtual Machine, a container. Or

even locally for development purposes.

Plugins

Jenkins is well tested and provide several integrations with

1800+ plugins to support build, deployment and automation

for the project

Enterprise Options

Support

Managed
Service

Continuous Integration
Continuous Integration is a process in which the code is
merged from multiple contributors and added to a single
repository.
In simple words, CI is a process to take the code package it
and send it to the CD for further processing.

Continuous Deployment
Continuous Deployment is an automated process in which the
code is taken from the repository and deployed to the system.

Continuous Integration and
Continuous Delivery/Deployment (CICD)

CI CD CD

CI/CD in simple words is a process to take a code, package it up and
deploy it to a system that can be serverless, a VM, or a container.
CI/CD can be broken down into 3 steps:

• CI – Continuous Integration
• CD – Continuous Delivery
• CD – Continuous Deployment

The Key Pieces of CI

>_ Tests Security Checks

Unit tests

Integration tests

Key Processes of Continuous Integration

• Package up the code

• Test the code (run unit tests, integration tests, etc)

• Run security checks against the code

Continuous Integration (CI)

Think of the Continuous Integration process like a gift you're wrapping

• The gift comes in pieces

• You put the gift together (maybe a toy chest/box)

• The gift gets wrapped in wrapping paper

• You put it in the car and deliver it to the person.

Continuous Integration (CI)

Continuous Deployment vs
Continuous Delivery

CD CD

Continuous Delivery Continuous Deployment

CI CI

The basic difference between Continuous Delivery and Continuous

Deployment is that in Continuous Delivery to deploy the code after the CI

process you have to manually trigger it via some button to deploy on the

system whereas in Continuous Deployment this process is automatic.

Key Pieces of CD

Authenticate

CD

>_ Tests

CD process

System

Key Pieces of CD:

• Ensure you're authenticated to the system or wherever you're deploying

• Ensure that the code that's being deployed is working as expected once it's deployed

Installing Jenkins

Ubuntu 20.04

https://www.jenkins.io/doc/book/installing/linux/

Install Jenkins on Ubuntu

Step 1: Install Java on Ubuntu

$ sudo apt update
$ sudo apt sudo apt install openjdk-8-jdk

Alternatively, install version 11:
$ sudo apt install openjdk-11-jdk

Confirm the download by pressing Y and
Enter

Step 2: Add the repository key to the
system:

$ sudo apt wget -q -O -
https://pkg.jenkins.io/debian-
stable/jenkins.io.key | sudo apt-key add -

Step 3: Once the key is added with no
errors, append the Debian package
repository address

$ sudo sh -c 'echo deb
http://pkg.jenkins.io/debian-stable
binary/ >
/etc/apt/sources.list.d/jenkins.list’

Step 4: Run update to use new repository

$ sudo apt update

Step 5: Install Jenkins

$ sudo apt install jenkins

Start Jenkins on Ubuntu

After successful installation let us start Jenkins

$ sudo systemctl start jenkins

The above command will not display any output

To check the running status of Jenkins use the below command
which should show active status on run

$ sudo systemctl status jenkins

Jenkins Plugins
Plugins are used in Jenkins to enhance Jenkins functionality and cater to user-specific needs.
Just like how Gmail, Facebook and LinkedIn help you connect your one service to another,
plugins also work the same way and allow us to connect one service to other services and
work with other products.

User Website

Login with Google

Login with Facebook

Login with LinkedIn

Plugins

Jenkins

Azure Plugin

AWS Plugin

Github Actions Plugin

For example, you want to connect to Azure from Jenkins you would need to download Azure Plugin which

will allow you to connect to Azure at a programmatic level.

Similarly, we can have other integrations with AWS, GitHub, etc using plugins.

Install Plugins

To install a new plugin in Jenkins
1) Go to Manage Jenkins -> Manager Plugins
2) Click Available and search for the desired plugin.
3) Select the desired plugin and Install.
Note: Few plugins may need a restart

To restart Jenkins
$ sudo systemctl restart jenkins

OR

Update Plugins

To update any existing plugin in Jenkins
1) Go to Manage Jenkins -> Manager Plugins
2) Click Updates and search for the desired plugin.
3) Select the desired plugin and Install.
Note: Few plugins may need a restart

To restart Jenkins
$ sudo systemctl restart jenkins

OR

Delete Plugins

To delete any plugin in Jenkins
1) Go to Manage Jenkins -> Manager Plugins
2) Go to Installed and search for the desired plugin.
3) Click on uninstall button for the plugin you want to delete.
Click yes to proceed with the deletion.

Jenkins Visuals

Visuals Jenkins

Menu

Build User

account

Navigate

Jenkins Jobs
Different types of jobs that can be created in Jenkins:
1) Freestyle project

This is a central feature of Jenkins. It will build the project, combine SCM with the build system. It can
also be used for things other than building applications.

2) Pipeline
This is used to create a pipeline

3) Multi-configuration project
This is great if you need a large number of Jenkins configurations if you need multiple environments
like Dev/ UAT.

4) Folder
This creates containers and stores nested items. It is useful in grouping, creating a namespace, etc.

5) Organisation folder
Creates a multibranch project for all different subfolders that are available.

6) Multibranch Pipeline
It sets up pipeline projects for different repositories.

Administering Jenkins

Backup Restore Monitor

Scale Manage

Snapshots

Full

Backup and Restore

Backup

Which Files To Backup?

$JENKINS_HOME

Configuration files

(config.xml)

jobs

It is crucial to have adequate backups of your Jenkins instance. Backups are
used to recover from accidental configuration changes. Recovering a file that
has been mistakenly erased or has been corrupted. Or just to recover a
previous setup.

There are two ways we can backup Jenkins:

1) Using Plugins
2) Using custom shell script

Backup Jenkins

To backup Jenkins using a plugin, you will first need to install a backup plugin.
Some of the most commonly used plugins are ThinBackup, Periodic Backup,
Google cloud Backup.

For backing up using any of these plugins there are a few general steps that
must be followed:
1) Creating a backup directory with read and write access
2) Selecting files that need backup

Backing up using shell script
Please check out these popular repositories for your reference:
1) repository: https://github.com/sue445/jenkins-backup-script
2) gist: https://gist.github.com/abayer/527063a4519f205efc74

Backup Jenkins

https://github.com/sue445/jenkins-backup-script

Jenkinsfile

Jenkinsfile is a text file that contains definitions. This could be
templates or instructions. It tells pipelines what they should be
doing and what services and plugins they should be interacting
with.

Components of Jenkinsfile:

1) Pipeline – The task you are trying to accomplish
2) Build Agent –The place where you run your pipeline
3) Stages – Staging/Production/UAT
4) Steps –Work done in the pipeline

What Is A Jenkinsfile?

Jenkinsfile

Templates

Instructions

Jenkinsfile

Templates

Instructions

What Is A Jenkinsfile?

Components of Jenkinsfile

Jenkinsfile Jenkinsfile Jenkinsfile

Dev Staging Prod

Jenkinsfile

Dev Staging Prod

Jenkinsfile Jenkinsfile Jenkinsfile

Dev Staging Prod

Dev Staging Prod

Multi-Stage Pipelines

Jenkinsfile

Windows

Linux

MacOS

Docker

Build Agents

What Are Build Agents?

CI Pipeline

>_ Tests

Build Code

Unit test

Run tests

Integration test

Performance test

Smoke test

Binary

Artifac

t

Windo

ws

Linux MacO

S

Build Agents

Build Agents are systems that run the processes throughout the
pipelines.
Build agents help in building codes, deploying, and running
automated tests. It is a system that runs the entire workload.

Task Executor

Windows Linux MacOSRaspberry Pi Docker

Build agents

Running Builds on Same Server

Jenkins Server

Not Recommended

Separate Build Server

Jenkins Server Build Server

Recommended

Blue Ocean CICD

BlueOcean; New & Improved CICD!

The whole idea of BlueOcean is a new UI experience for CICD

in Jenkins

• Jenkins was definitely falling behind from a UI standpoint

• There were a ton of other CICD tools that felt much easier

to use from a UI perspective

• BlueOcean is meant to changed that narrative

What Are We Getting Out Of
BlueOcean?

• Sophisticated visualizations of continuous delivery (CD) Pipelines, allowing for fast and

intuitive comprehension of your Pipeline’s status.

• Pipeline editor - makes the creation of Pipelines approachable by guiding the user

through an intuitive and visual process to create a Pipeline.

• Personalization to suit the role-based needs of each member of the team.

• Pinpoint precision when intervention is needed and/or issues arise. Blue Ocean shows

where in the pipeline attention is needed, facilitating exception handling and increasing

productivity.

• Native integration for branch and pull requests, enables maximum developer productivity

when collaborating on code with others in GitHub and Bitbucket.

Blue Ocean

Easier to use

Sophisticated visualizations

Fast and intuitive Pipeline status

Pipeline editor

Personalization

Pinpoint precision

Native integration for branch and pull requests

Blue Ocean

Jenkins Security

Jenkins Security
Jenkins access control is split into two parts:

1) Authentication (users prove who they
are) is done using a security realm. The
security realm determines user identity
and group memberships.

2) Authorization (users are permitted to do
something) is done by an authorization
strategy. This controls whether a user
(directly or through group memberships)
has a permission

Authentication Authorization

User and access Control

Identity Membership

Security Realm Permissions

Common Jenkins Security
Mistakes

Anyone can do anything

This authorization strategy is very rarely a good choice, as it allows even anonymous users to administer Jenkins. As a rule of thumb, it

should not be used. Never rely on the Jenkins URL to not be known outside your team or organization alone for security.

Logged-in users can do anything

This authorization strategy can be a sensible choice as long as only fully trusted users have accounts to access Jenkins. This is the default

with Jenkins’s single admin user when setting up Jenkins with the setup wizard.

Switching to an authentication realm that allows untrusted users to have an account later will result in those users getting administrative

access to Jenkins if you keep this authorization stategy. Examples include enabling account signup for Jenkins' own user database, or

various other authorization realms, many of which (GitHub, Google, GitLab, etc.) allow anyone to sign up for an account.

Anonymous and authenticated users

Similar to the previous items, you should generally not grant significant permissions to anonymous (the anonymous user) or authenticated

(any authenticated user) when using an authorization strategy that allows finer-grained control (like Matrix Authorization Strategy).

Granting Overall/Administer permission to anonymous is similar to Anyone can do anything, while granting that permission

to authenticated is essentially the same as Logged-in users can do anything.

Built-in node

Users with limited permissions must not be able to configure jobs that run on the built-in node. When setting up a new Jenkins instance,

adding users and switching authorization strategies, it is important to also set up distributed builds and limit what jobs are able to run on

the built-in node.

ext

https://plugins.jenkins.io/matrix-auth
https://www.jenkins.io/doc/book/security/controller-isolation/

Jenkins Security

Common security mistakes that often
happens when using Jenkins

• Anyone can do anything

• Logged-in users can do anything

• Anonymous and authenticated users

• Built-in node

References

1) https://github.com/AdminTurnedDevOps/go-webapp-sample
2) https://github.com/AdminTurnedDevOps/Go-Demo-App

https://github.com/AdminTurnedDevOps/go-webapp-sample
https://github.com/AdminTurnedDevOps/Go-Demo-App

