

Vijin Palazhi
@vijinpalazhi

https://twitter.com/vijinpalazhi

Introduction

to IaC
HCL

Basics

Types of

IaC Tools
Why

Terraform?

Providers
Input

Variables

Objectives

Output

Variables

Resource

Attributes

Provision,

Update and

Destory

Resource

Dependencies

Terraform

State
LifeCycle

Rules
Commands Mutable vs

Immutable

Meta-

Arguments
count

Objectives

for-each

Datasources

AWS BasicsVersion

Constraints

Programmati

c Access
Introduction

to S3
IAM Basics IAM with

Terraform

S3 with

Terraform

Introduction to

DynanoDB

DynamoDB

with

Terraform

Objectives

Remote

State
Introduction

to EC2

Remote

Backend with

S3

State

Commands

AWS EC2

With

Terraform
Provisioners

State Locking

Objectives

Terraform

Taints Debugging
Terraform

Import
Modules Functions

Objectives

Conditional

Expressions
Workspaces

Terraform

Cloud

Traditional IT &
Challenges

In
fr

as
tr

u
ct

u
re

 T
ea

m System/ NW
Administrators

Storage Admins

Backup Admins

Application team

Field Engineers

Business Business Analyst
Solution Architect
/ Technical Lead

Procurement

Slow Deployment

Expensive

Limited Automation

Human Error

Wasted Resources
Data Center

Inconsistency

In
fr

as
tr

u
ct

u
re

 T
ea

m System/ NW
Administrators

Storage Admins

Backup Admins

Application team

Field Engineers

Business Business Analyst
Solution Architect
/ Technical Lead

Procurement

Slow Delivery

Human Error

Data Center

Inconsistency

Infrastructure as Code

Infrastructure as
Code

Infrastructure as Code

ec2.sh

#!/bin/bash

IP_ADDRESS="10.2.2.1"

EC2_INSTANCE=$(ec2-run-instances --instance-type

t2.micro ami-0edab43b6fa892279)

INSTANCE=$(echo ${EC2_INSTANCE} | sed 's/*INSTANCE //'

| sed 's/ .*//')

Wait for instance to be ready

while ! ec2-describe-instances $INSTANCE | grep -q

"running"

do

echo Waiting for $INSTANCE is to be ready...

done

Check if instance is not provisioned and exit

if [! $(ec2-describe-instances $INSTANCE | grep -q

"running")]; then

echo Instance $INSTANCE is stopped.

exit

fi

ec2-associate-address $IP_ADDRESS -i $INSTANCE

echo Instance $INSTANCE was created successfully!!!

Infrastructure as Code

ec2.sh

#!/bin/bash

IP_ADDRESS="10.2.2.1"

EC2_INSTANCE=$(ec2-run-instances --instance-type

t2.micro ami-0edab43b6fa892279)

INSTANCE=$(echo ${EC2_INSTANCE} | sed 's/*INSTANCE //'

| sed 's/ .*//')

Wait for instance to be ready

while ! ec2-describe-instances $INSTANCE | grep -q

"running"

do

echo Waiting for $INSTANCE is to be ready...

done

Check if instance is not provisioned and exit

if [! $(ec2-describe-instances $INSTANCE | grep -q

"running")]; then

echo Instance $INSTANCE is stopped.

exit

fi

ec2-associate-address $IP_ADDRESS -i $INSTANCE

echo Instance $INSTANCE was created successfully!!!

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

Infrastructure as Code

ec2.yaml main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

- amazon.aws.ec2:

key_name: mykey

instance_type: t2.micro

image: ami-123456

wait: yes

group: webserver

count: 3

vpc_subnet_id: subnet-29e63245

assign_public_ip: yes

Types of IAC Tools

Types of IAC Tools

Configuration Management Server Templating Provisioning Tools

Designed to Install and Manage Software

Maintains Standard Structure

Version Control

Idempotent

Configuration Management

Types of IAC Tools

Pre Installed Software and Dependencies

Virtual Machine or Docker Images

Immutable Infrastructure

Server Templating Tools

Provisioning Tools

Deploy Immutable Infrastructure resources

Servers, Databases, Network Components etc.

Multiple Providers

Terraform

Why Terraform?

AWS

VMWare

GCP

Azure

Physical Machines

Providers

AWS

VMWare

GCP

Azure

Physical Machines

DNS

CloudFlare

Palo Alto

Infoblox

BigIP

Auth0

Grafana

Wavefront

Sumo Logic

DataDog

MySQL

MongoDB

PostgreSQL

VCS

InfluxDB

HashiCorp Configuration Language

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

resource "aws_s3_bucket" "finance" {
bucket = "finanace-21092020"
tags = {

Description = "Finance and Payroll"
}

}

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Team Leader"

}
}

Declarative

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

resource "aws_s3_bucket" "finance" {
bucket = "finanace-21092020"
tags = {

Description = "Finance and Payroll"
}

}

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Team Leader"

}
}

Real World Infrastructure

Plan

Apply

Init

Resource

Real World Infrastructure

Terraform State

Real World Infrastructureterraform.tfstate

Terraform Import

Real World Infrastructureterraform.tfstate

Terraform Cloud and Terraform Enterprise

Installing Terraform

>_

$ wget https://releases.hashicorp.com/terraform/0.13.0/terraform_0.13.0_linux_amd64.zip

$ unzip terraform_0.13.0_linux_amd64.zip

$ mv terraform /usr/local/bin

$ terraform version

Terraform v0.13.0

HCL – Declarative Language

resource "aws_instance" "webserver" {
ami = "ami-0c2f25c1f66a1ff4d"
instance_type = "t2.micro"

}

aws.tf

Resource

Resource

HCL Basics

local.tf

>_

$ mkdir /root/terraform-local-file
$ cd /root/terraform-local-file

<block> <parameters> {
key1 = value1
key2 = value2

}

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

local.tf

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

Block

Name

Resource

Type

Resource

Name

local=provide

r

file=resource

Arguments

FILENAME CONTENT

{

}

aws-ec2.tf

resource "aws_instance" "webserver" {
ami = "ami-0c2f25c1f66a1ff4d"
instance_type = "t2.micro"

}

aws-s3.tf

resource "aws_s3_bucket" "data" {
bucket = "webserver-bucket-org-2207"
acl = "private"

}

Init Plan Apply

local.tf

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

>_

$ terraform init
Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/local...
- Installing hashicorp/local v1.4.0...
- Installed hashicorp/local v1.4.0 (signed by HashiCorp)

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, we recommend adding version constraints in a required_providers block
in your configuration, with the constraint strings suggested below.

* hashicorp/local: version = "~> 1.4.0"

Terraform has been successfully initialized!

local.tf

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

>_

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

local_file.pet will be created
+ resource "local_file" "pet" {

+ content = "We love pets!"
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

Plan: 1 to add, 0 to change, 0 to destroy.

--

Note: You didn't specify an "-out" parameter to save this plan, so
Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

>_

$ terraform apply
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

local_file.pet will be created
+ resource "local_file" "pet" {

+ content = "We love pets!"
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes
local_file.new_file: Creating...
local_file.new_file: Creation complete after 0s
[id=521c5c732c78cb42cc9513ecc7c0638c4a115b55]
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

$ cat /root/pets.txt

We love pets!

>_

$ terraform show

local_file.pet:
resource "local_file" “pet" {

content = "We love pets!"
directory_permission = "0777"
file_permission = "0777"
filename = "/root/pets.txt"
id = "cba595b7d9f94ba1107a46f3f731912d95fb3d2c"

}

local.tf

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

Resource

Type

local=provide

r

file=resource

https://registry.terraform.io/providers/hashicorp/local/latest/docs

Argument-1

Argument-2

Argument-X

Argument-1

Argument-2

Argument-X

Argument-1

Argument-2

Argument-X

Argument-1

Argument-2

Argument-X

Argument-1

Argument-2

Argument-X

Argument-1

Argument-2

Argument-X

provider

resource_typ

e

Arguments

https://registry.terraform.io/providers/hashicorp/local/latest/docs

Local provider

local_file

filename (required)

Content (optional)

file_permission (optional)

directory_permission (optional)

sensitive_content (optional)

content_base64 (optional)

provider

resource_typ

e

Arguments

Update and Destroy
Infrastructure

>_

$ terraform plan

local_file.pet: Refreshing state...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

--
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"

~ file_permission = "0777" -> "0700" # forces replacement
filename = "/root/pet.txt"

~ id =
"5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -> (known after apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

--
Note: You didn't specify an "-out" parameter to save this plan, so
Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

local.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

file_permission = "0700"

>_

$ terraform apply

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"

~ file_permission = "0777" -> "0700" # forces replacement
filename = "/root/pet.txt"

~ id =
"5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -> (known after apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

local_file.pet: Destroying...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s
local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

>_

$ ls -ltr /root/pets.txt

-rwx------ 1 root root 30 Aug 17 23:20 pet.txt

>_

$ terraform destroy
local_file.pet: Refreshing state...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
- destroy

Terraform will perform the following actions:

local_file.pet will be destroyed
- resource "local_file" "pet" {

- content = "My favorite pet is a gold fish" -> null
- directory_permission = "0777" -> null
- file_permission = "0700" -> null
- filename = "/root/pet.txt" -> null
- id = "5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -

> null
}

Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

local_file.pet: Destroying... [id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.

Installing Terraform

>_

$ wget https://releases.hashicorp.com/terraform/0.13.0/terraform_0.13.0_linux_amd64.zip

$ unzip terraform_0.13.0_linux_amd64.zip

$ mv terraform /usr/local/bin

$ terraform version

Terraform v0.13.0

HCL – Declarative Language

resource "aws_instance" "webserver" {
ami = "ami-0c2f25c1f66a1ff4d"
instance_type = "t2.micro"

}

aws.tf

Resource

Resource

Using Terraform
Providers

>_

$ terraform init

Official

Verified

Community

registry.terraform.io

>_>_

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/local...
- Installing hashicorp/local v2.0.0...
- Installed hashicorp/local v2.0.0 (signed by HashiCorp)

The following providers do not have any version constraints in
configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings suggested
below.

* hashicorp/local: version = "~> 2.0.0"

Terraform has been successfully initialized!

plugins

$ ls /root/terraform-local-file/.terraform

so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings suggested
below.

* hashicorp/local: version = "~> 2.0.0"

Terraform has been successfully initialized!

Organizational
Namespace

Type

so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings suggested
below.

* hashicorp/local: version = "~> 2.0.0"

Terraform has been successfully initialized!

Organizational
Namespace

Type

registry.terraform.io/

Hostname

Initializing provider plugins...
- Finding latest version of hashicorp/local...
- Installing hashicorp/local v2.0.0...
- Installed hashicorp/local v2.0.0 (signed by HashiCorp

The following providers do not have any version constraints in
configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings suggested

Configuration
Directory

>_

local.tf

[terraform-local-file]$ ls /root/terraform-local-file

local.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

cat.tf

resource "local_file" "cat" {
filename = "/root/cat.txt"
content = "My favorite pet is Mr. Whiskers"

}

local.tf cat.tf

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "local_file" "cat" {
filename = "/root/cat.txt"
content = "My favorite pet is Mr. Whiskers"

}

File Name Purpose

main.tf
Main configuration file containing resource

definition

variables.tf Contains variable declarations

outputs.tf Contains outputs from resources

provider.tf Contains Provider definition

Multiple Providers

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

>_

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but
will not be
persisted to local or remote state storage.

local_file.pet: Refreshing state...
[id=d1a31467f206d6ea8ab1cad382bc106bf46df69e]

.

.
random_pet.my-pet will be created
+ resource "random_pet" "my-pet" {

+ id = (known after apply)
+ length = 1
+ prefix = "Mrs"
+ separator = "."

}

Plan: 1 to add, 0 to change, 0 to destroy.

>_

$ terraform init
Initializing the backend...

Initializing provider plugins...
- Using previously-installed hashicorp/local v2.0.0
- Finding latest version of hashicorp/random...
- Installing hashicorp/random v2.3.0...
- Installed hashicorp/random v2.3.0 (signed by HashiCorp)

The following providers do not have any version constraints in
configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain
breaking
changes, we recommend adding version constraints in a required_providers
block
in your configuration, with the constraint strings suggested below.

* hashicorp/local: version = "~> 2.0.0"
* hashicorp/random: version = "~> 2.3.0"

Terraform has been successfully initialized!

>_

$ terraform apply
local_file.new_file: Refreshing state...
[id=d1a31467f206d6ea8ab1cad382bc106bf46df69e]

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

random_pet.my-pet will be created
+ resource "random_pet" "my-pet" {

+ id = (known after apply)
+ length = 1
+ prefix = "Mrs"
+ separator = "."

}

Plan: 1 to add, 0 to change, 0 to destroy.

random_pet.my-pet: Creating...
random_pet.my-pet: Creation complete after 0s [id=Mrs.hen]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Mrs.hen

Define Input
Variables

main.tf

Argument Value

filename "/root/pets.txt"

content "We love pets!"

prefix "Mrs"

separator "."

length "1"

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "We love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = "1"
}

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

var.filename
var.content

var.prefix
var.separator

var.length

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "We love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = "1"
}

>_

local_file.pet will be created
+ resource "local_file" "pet" {

+ content = “We love pets!"
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pet.txt"
+ id = (known after apply)

}

random_pet.my-pet will be created
+ resource "random_pet" "my-pet" {

+ id = (known after apply)
+ length = 1
+ prefix = "Mrs"
+ separator = "."

}

Plan: 2 to add, 0 to change, 0 to destroy.
.
.
random_pet.my-pet: Creating...
random_pet.my-pet: Creation complete after 0s [id=Mrs.ram]
local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=f392b4bcf5db76684f719bf72061627a9a177de1]

$ terraform apply

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

var.filename
var.content

var.prefix
var.separator

var.length

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "We love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = "1"
}

"My favorite pet is Mrs. Whiskers"

"2"

>_

Terraform will perform the following actions:

-/+ resource "local_file" "pet" {
~ content = “We love pets!" -> "My favorite pet is Mrs. Whiskers!" #

forces replacement
directory_permission = "0777"
file_permission = "0777"
filename = "/root/pet.txt"

~ id = "bc9cabef1d8b0071d3c4ae9959a9c328f35fe697" -> (known after
apply)

}

random_pet.my-pet must be replaced
-/+ resource "random_pet" "my-pet" {

~ id = "Mrs.Hen" -> (known after apply)
~ length = 1 -> 2 # forces replacement

prefix = "Mrs"
separator = "."

}

Plan: 2 to add, 0 to change, 2 to destroy.
random_pet.my-pet: Destroying... [id=Mrs.hen]
random_pet.my-pet: Destruction complete after 0s
local_file.pet: Destroying... [id=bc9cabef1d8b0071d3c4ae9959a9c328f35fe697]
local_file.pet: Destruction complete after 0s
random_pet.my-pet: Creating...
local_file.pet: Creating...
.

$ terraform apply

resource "aws_instance" "webserver" {
ami = var.ami
instance_type = var.instance_type

}

main.tf

var.ami
var.instance_type

variables.tf

variable "ami" {
default = "ami-0edab43b6fa892279"

}
variable "instance_type" {
default = "t2.micro"

}

Understanding the
Variable Block

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "I love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = "1"
}

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "I love pets!"

}
variable "prefix" {

default = "Mrs"

}
variable "separator" {

default = "."

type = string
description = "the path of local file"

type = string
description = “the content of the file"

type = string
description = "the prefix to be set"

variables.tf

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "I love pets!"

}
variable "prefix" {

default = "Mrs"

}
variable "separator" {

default = "."

type = string
description = "the path of local file"

type = string
description = “the content of the file"

type = string
description = "the prefix to be set"

variable "length" {
default = "2"
type = number
description = "length of the pet name"

}

variable "password_change" {
default = "true"
type = bool

}

Type Example

string "/root/pets.txt"

number 1

bool true/false

any Default Value

Type Example

string "/root/pets.txt"

number 1

bool true/false

any Default Value

list ["cat", "dog"]

map
pet1 = cat
pet2 = dog

object
Complex Data

Structure

tuple
Complex Data

Structure

variables.tf

variable "prefix" {
default = ["Mr", "Mrs", "Sir"]
type = list

}

List

maint.tf

resource "random_pet" "my-pet" {
prefix = var.prefix[0]

}0 1 2

Index Value

0 Mr

1 Mrs

2 Sir

variables.tf maint.tf

variable file-content {
type = map
default = {

"statement1" = "We love pets!"
"statement2" = “We love animals!"

}
}

Key Value

statement1 We love pets!

statement2 We love animals!

resource local_file my-pet {
filename = "/root/pets.txt"
content =

}

Map

var.file-content["statement2"]

>_

variables.tf

variables.tf

variables.tf

variable "prefix" {
default = ["Mr", "Mrs", "Sir"]
type = list(string)

}

variable "prefix" {
default = ["1", "2", "3"]
type = list(number)

}

variable "prefix" {
default = ["Mr", "Mrs", "Sir"]
type = list(number)

}

Error: Invalid default value for variable

on variables.tf line 3, in variable "prefix":
3: default = ["Mr", "Mrs", "Sir"]

This default value is not compatible with the
variable's type constraint: a number is required.

$ terraform plan

List of a Type

variables.tf

variable "cats" {
default = {
"color" = "brown"
"name" = "bella"

}
type = map(string)

}

variables.tf

variable "pet_count" {
default = {
"dogs" = "3"
"cats" = "1"
"goldfish" = "2"

}
type = map(number)

}

Map of a Type

variables.tf

variables.tf

Set

variable "prefix" {
default = ["Mr", "Mrs", "Sir"]
type = set(string)

}

variable "age" {
default = ["10", "12", "15"]
type = set(number)

}

variables.tf

variable "fruit" {
default = ["apple", “banana"]
type = set(string)

}

variables.tf

variable "fruit" {
default = ["apple", "banana", "banana"]
type = set(string)

}

variables.tf

variable "age" {
default = ["10", "12", "15", "10"]
type = set(number)

}

variables.tf

variable "prefix" {
default = ["Mr", "Mrs", "Sir", "Sir"]
type = set(string)

}

variables.tf

variable "bella" {
type = object({

name = string
color = string
age = number
food = list(string)
favorite_pet = bool

})

}

Key Example Type

name bella string

color brown string

age 7 number

food ["fish", "chicken", "turkey"] list

favorite_pet true bool

Objects

default = {
name = "bella"
color = "brown"
age = 7
food = ["fish", "chicken", "turkey"]
favorite_pet = true

}

variables.tf

variable kitty {
type = tuple([string, number, bool])
default = ["cat", 7, true]

}

variable kitty {
type = tuple([string, number, bool])
default = ["cat", 7, true, "dog"]

}

Tuples

variables.tf

>_

$ terraform plan

Error: Invalid default value for variable

on variables.tf line 3, in variable "kitty":
3: default = ["cat", 7, true, "dog"]

This default value is not compatible with the
variable's type constraint:
tuple required.

Using Variables in
Terraform

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

var.filename
var.content

var.prefix
var.separator

var.length

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "We love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = 2
}

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

resource "random_pet" "my-pet" {
prefix = "Mrs"
separator = "."
length = "1"

}

var.filename
var.content

var.prefix
var.separator

var.length

variables.tf

variable "filename" {

}
variable "content" {

}
variable "prefix" {

}
variable "separator" {

}
variable "length" {

}

>_

var.content
Enter a value:

$ terraform apply

Interactive Mode

We love Pets!

var.filename
Enter a value: /root/pets.txt

var.length
Enter a value: 2

var.prefix
Enter a value: Mrs.

var.separator
Enter a value: .

>_

$ terraform apply -var "filename=/root/pets.txt" -var "content=We love
Pets!" -var "prefix=Mrs" -var "separator=." -var "length=2"

Command Line Flags

>_

$ export TF_VAR_filename="/root/pets.txt"
$ export TF_VAR_content="We love pets!"
$ export TF_VAR_prefix="Mrs"
$ export TF_VAR_separator="."
$ export TF_VAR_length="2"
$ terraform apply

Environment Variables

>_

$ terraform apply

terraform.tfvars

filename = "/root/pets.txt"
content = "We love pets!"
prefix = "Mrs"
separator = "."
length = "2"

Variable Definition Files

terraform.tfvars | terraform.tfvars.json

*.auto.tfvars | *.auto.tfvars.json

-var-file variables.tfvars

Automatically Loaded

Variable Definition Precedence

main.tf

resource local_file pet {
filename = var.filename

}

variables.tf

variable filename {
type = string

}

terraform.tfvars

filename = "/root/pets.txt"

variable.auto.tfvars

filename = "/root/mypet.txt"

>_

$ export TF_VAR_filename="/root/cats.txt"

>_

$ terraform apply -var "filename=/root/best-pet.txt"

?

?

?

?

Variable Definition Precedence

terraform.tfvars

filename = "/root/pets.txt"

variable.auto.tfvars

filename = "/root/mypet.txt"

>_

$ export TF_VAR_filename="/root/cats.txt"

>_

$ terraform apply -var "filename=/root/best-pet.txt"

Order Option

1 Environment Variables

2 terraform.tfvars

3 *.auto.tfvars (alphabetical order)

?

?

?

?

4 -var or –var-file (command-line flags)

1

2

3

4

1

2

3

Resource Attribute
Reference

>_

random_pet.my-pet: Creating...
local_file.pet: Creating...
random_pet.my-pet: Creation complete after 0s [id=Mr.bull]
local_file.pet: Creation complete after 0s
[id=059090e865809f9b6debfda7aebf48fdce2220a6]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

FILENAME CONTENT PREFIX SEPERATOR

LENGTH

Mr.Bull

main.tf

resource "local_file" "pet" {
filename = var.filename
content = "My favorite pet is Mr.Cat"

}

resource "random_pet" "my-pet" {
prefix = var.prefix
separator = var.separator
length = var.length

}

${random_pet.my-pet.id}"

local_file" "pet" {
var.filename

"My favorite pet is Mr.Cat"

random_pet" "my-pet" {
var.prefix
= var.separator
var.length

${random_pet.my-pet.id}" Mr.Bull"

>_

.

.

.
local_file.pet must be replaced

-/+ resource "local_file" "pet" {
~ content = "My favorite pet is Mrs.Cat!" ->

"My favorite pet is Mr.bull" # forces replacement
directory_permission = "0777"
file_permission = "0777"
filename = "/roots/pets.txt"

~ id =
"98af5244e23508cffd4a0c3c46546821c4ccbbd0" -> (known after
apply)

}
.
.
local_file.pet: Destroying...
[id=98af5244e23508cffd4a0c3c46546821c4ccbbd0]
local_file.pet: Destruction complete after 0s
local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=e56101d304de7cf1b1001102923c6bdeaa60c523]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

$ terraform apply

Resource
Dependencies

Implicit Dependency

main.tf

resource "local_file" "pet" {
filename = var.filename
content = "My favorite pet is Mr.Cat"

}

resource "random_pet" "my-pet" {
prefix = var.prefix
separator = var.separator
length = var.length

}

${random_pet.my-pet.id}"

12

Explicit Dependency

main.tf

resource "local_file" "pet" {
filename = var.filename
content = "My favorite pet is Mr.Cat"

}

resource "random_pet" "my-pet" {
prefix = var.prefix
separator = var.separator
length = var.length

}

depends_on = [
random_pet.my-pet

]

12

Output Variables

output "<variable_name>" {
value = "<variable_value>"
<arguments>

}

main.tf

resource "local_file" "pet" {
filename = var.filename
content = "My favorite pet is Mr.Cat"

}

resource "random_pet" "my-pet" {
prefix = var.prefix
separator = var.separator
length = var.length

}

${random_pet.my-pet.id}"

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {

default = "I love pets!"
}
variable "prefix" {

default = "Mrs"
}
variable "separator" {

default = "."
}
variable "length" {

default = "1"
}

output pet-name {
value = random_pet.my-pet.id
description = "Record the value of pet ID generated by the

random_pet resource"
}

>_

.

.

Outputs:

pet-name = Mrs.gibbon

$ terraform apply

>_

>_

pet-name = Mrs.gibbon

$ terraform output

Mrs.gibbon

$ terraform output pet-name

Output Variable

SHELL SCRIPTS

Introduction to
Terraform State

>_

variables.tf

>_

main.tf variables.tf

$ ls terraform-local-file

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}

[terraform-local-file]$ terraform init

$ cd terraform-local-file

Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/local...
- Installing hashicorp/local v1.4.0...
- Installed hashicorp/local v1.4.0 (signed by HashiCorp)

The following providers do not have any version constraints
in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that
may contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings
suggested below.

* hashicorp/local: version = "~> 1.4.0"

Terraform has been successfully initialized!

Init

main.tf

resource "local_file" "pet" {
filename = var.filename
content = var.content

}

>_

variables.tf

>_

main.tf variables.tf

$ ls terraform-local-file

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}

Init

main.tf

resource "local_file" "pet" {
filename = var.filename
content = var.content

}

[terraform-local-file]$ terraform plan

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

local_file.pet will be created
+ resource "local_file" "pet" {

+ content = "I love pets!"
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

Plan: 1 to add, 0 to change, 0 to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so
Terraform

Plan

>_

variables.tf

>_

main.tf variables.tf

$ ls terraform-local-file

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}

Init

main.tf

resource "local_file" "pet" {
filename = var.filename
content = var.content

} Plan

[terraform-local-file]$ terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

local_file.pet will be created
+ resource "local_file" "pet" {

+ content = "I love pets!"
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Apply

>_

InitPlanApply

>_

I love pets!

[terraform-local-file]$ cat /root/pets [terraform-local-file]$ terraform apply
local_file.pet: Refreshing state...
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

>_

InitPlanApply

>_

main.tf variables.tf terraform.tfstate

[terraform-local-file]$ ls [terraform-local-file]$ cat terraform.tfstate

{

"version": 4,

"terraform_version": "0.13.0",

"serial": 1,

"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",

"outputs": {},

"resources": [

{

"mode": "managed",

"type": "local_file",

"name": "pet",

"provider":

"provider[\"registry.terraform.io/hashicorp/local\"]"

"instances": [

{

"schema_version": 0,

"attributes": {

"content": "I love pets!",

"content_base64": null,

"directory_permission": "0777",

"file_permission": "0777",

"filename": "/root/pets.txt",

"id":

"7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68",

"sensitive_content": null

},

"private": "bnVsbA=="

}

>_

InitPlanApply>_

Refreshing Terraform state in-memory
prior to plan...
The refreshed state will be used to
calculate this plan, but will not be
persisted to local or remote state
storage.

local_file.pet: Refreshing state...
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e
1b68]
.
.
.
[Output Truncated]

$ terraform plan

[terraform-local-file]$ cat terraform.tfstate

{

"version": 4,

"terraform_version": "0.13.0",

"serial": 1,

"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",

"outputs": {},

"resources": [

{

"mode": "managed",

"type": "local_file",

"name": "pet",

"provider":

"provider[\"registry.terraform.io/hashicorp/local\"]"

"instances": [

{

"schema_version": 0,

"attributes": {

"content": "I love pets!",

"content_base64": null,

"directory_permission": "0777",

"file_permission": "0777",

"filename": "/root/pets.txt",

"id":

"7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68",

"sensitive_content": null

},

"private": "bnVsbA=="

}

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}
"We love pets!"

>_

InitPlanApply>_

local_file.pet: Refreshing state...
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]

Terraform will perform the following actions:

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

~ content = "I love pets!" -
> "We love pets!" # forces replacement

directory_permission = "0777"
file_permission = "0777"
filename = "/root/pets.txt"

~ id =
"7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68" ->
(known after apply)

}
.

$ terraform apply

[terraform-local-file]$ cat terraform.tfstate

{

"version": 4,

"terraform_version": "0.13.0",

"serial": 1,

"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",

"outputs": {},

"resources": [

{

"mode": "managed",

"type": "local_file",

"name": "pet",

"provider":

"provider[\"registry.terraform.io/hashicorp/local\"]"

"instances": [

{

"schema_version": 0,

"attributes": {

"content": "I love pets!",

"content_base64": null,

"directory_permission": "0777",

"file_permission": "0777",

"filename": "/root/pets.txt",

"id":

"7e4db4fbfdbb108bdd04692602bae3e9bc4d1c14",

"sensitive_content": null

},

"private": "bnVsbA=="

}

variables.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}
"We love pets!"

"We love pets!“,

Real World Infrastructure terraform.tfstate

Purpose of State

Real World Infrastructure terraform.tfstate

id=aabbcc id=eeddff id=gghhhii

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "My favorite pet is ${random_pet.my-pet.id}!"

}
resource "random_pet" "my-pet" {

length = 1
}
resource "local_file" "cat" {

filename = "/root/cat.txt"
content = "I like cats too!"

}

pet

cat

Tracking Metadata

my-pet

>_

.

.

.
Plan: 3 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

local_file.cat: Creating...
random_pet.my-pet: Creating...
local_file.cat: Creation complete after 0s
[id=fe448888891fc40342313bc44a1f1a8986520c89]
random_pet.my-pet: Creation complete after 0s [id=yak]

local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=28b373c6c1fa3fce132a518eadd0175c98f37f20]

Apply complete! Resources: 3 added, 0 changed, 0
destroyed.

$ terraform apply

Tracking Metadata

pet

cat

my-pet

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "My favorite pet is ${random_pet.my-pet.id}!"

}
resource "random_pet" "my-pet" {

length = 1
}
resource "local_file" "cat" {

filename = "/root/cat.txt"
content = "I like cats too!"

}

Tracking Metadata

pet

cat

my-pet

main.tf

resource "local_file" "cat" {
filename = "/root/cat.txt"
content = "I like cats too!"

}

Tracking Metadata

pet

cat

my-pet

main.tf

resource "local_file" "cat" {
filename = "/root/cat.txt"
content = "I like cats too!"

}

Tracking Metadata

pet

cat

my-pet

>_

{
"mode": "managed",
"type": "local_file",
"name": "pet",
"instances": [

{
"schema_version": 0,
"attributes": {

"content": "My favorite pet is yak!",
. },

"private": "bnVsbA==",
"dependencies": [

"random_pet.my-pet"
]

$ cat terraform.tfstate

main.tf

resource "local_file" "cat" {
filename = "/root/cat.txt"
content = "I like cats too!"

}

Tracking Metadata

pet

cat

my-pet

>_

Plan: 0 to add, 0 to change, 2 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

local_file.pet: Destroying...
[id=28b373c6c1fa3fce132a518eadd0175c98f37f20]
local_file.pet: Destruction complete after 0s

random_pet.my-pet: Destroying... [id=yak]
random_pet.my-pet: Destruction complete after 0s

$ terraform apply

Performance

terraform.tfstate

terraform.tfstate

Performance

{
"version": 4,
"terraform_version": "0.13.0",
"serial": 4,
"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",
"outputs": {},
"resources": [

{
"mode": "managed",
"type": "local_file",
"name": "pet",
"instances": [

{
"schema_version": 0,
"attributes": {

"content": "We love pets!",
"content_base64": null,
"directory_permission": "0777",

...

>_

An execution plan has been generated and is shown
below.
Resource actions are indicated with the following
symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

local_file.cat must be replaced
-/+ resource "local_file" "pet" {

~ content = "I like cats too!" ->
"Dogs are awesome!" # forces replacement

directory_permission = "0777"
file_permission = "0777"
filename = "/root/pets.txt"

~ id =
"cba595b7d9f94ba1107a46f3f731912d95fb3d2c" -> (known
after apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

--

$ terraform plan --refresh=false

>_

main.tf variables.tf terraform.tfstate

$ ls

terraform.tfstate

{
"version": 4,
"terraform_version": "0.13.0",
"serial": 4,
"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",
"outputs": {},
"resources": [

{
"mode": "managed",
"type": "local_file",
"name": "pet",
"instances": [

{
"schema_version": 0,
"attributes": {

"content": "We love pets!",
"content_base64": null,
"directory_permission": "0777",

...

Collaboration

tarraform.tfstate

terraform.tfstate

{
"version": 4,
"terraform_version": "0.13.0",
"serial": 4,
"lineage": "e35dde72-a943-de50-3c8b-1df8986e5a31",
"outputs": {},
"resources": [

{
"mode": "managed",
"type": "local_file",
"name": "pet",
"instances": [

{
"schema_version": 0,
"attributes": {

"content": "We love pets!",
"content_base64": null,
"directory_permission": "0777",

...

Collaboration

tarraform.tfstate

AWS S3 HashiCorp Consul

Terraform Cloud
Google Cloud

Storage

Terraform State
Considerations

terraform.tfstate

Sensitive Data

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [

{
"schema_version": 1,
"attributes": {

"ami": "ami-0a634ae95e11c6f91",
.
.
.

"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [

{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",

terraform.tfstate

Terraform State Considerations

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [
{
"schema_version": 1,
"attributes": {
"ami": "ami-0a634ae95e11c6f91",

.

.

.
"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [
{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",
"volume_id": "vol-070720a3636979c22",
"volume_size": 8,

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "My favorite pet is Mr.Whiskers!"

}
resource "random_pet" "my-pet" {

length = 1
}
resource "local_file" "cat" {

filename = "/root/cat.txt"
content = "I like cats too!"

}

Version ControlRemote State Backends

terraform.tfstate

No Manual Edits

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [

{
"schema_version": 1,
"attributes": {

"ami": "ami-0a634ae95e11c6f91",
.
.
.

"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [

{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",

Terraform Commands

>_

Success! The configuration is valid.

$ terraform validate

Error: Unsupported argument

on main.tf line 4, in resource "local_file" "pet":
4: file_permissions = "0777"

An argument named "file_permissions" is not expected
here. Did you mean "file_permission"?

$ terraform validate

terraform validate

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}
file_permissions = "0700"

>_

terraform fmt

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}
file_permission = "0700"

main.tf

$ terraform fmt

>_

terraform show

>_

local_file.pet:
resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"
file_permission = "0777"
filename = "/root/pets.txt"
id =

"cba595b7d9f94ba1107a46f3f731912d95fb3d2c"
}

$ terraform show

{"format_version":"0.1","terraform_version":"0.13.0
","values":{"root_module":{"resources":[{"address":
"local_file.pet","mode":"managed","type":"local_fil
e","name":"pet","provider_name":"registry.terraform
.io/hashicorp/local","schema_version":0,"values":{"
content":"We love
pets!","content_base64":null,"directory_permission"
:"0777","file_permission":"0777","filename":"/root/
pets.txt","id":"cba595b7d9f94ba1107a46f3f731912d95f
b3d2c","sensitive_content":null}}]}}}

$ terraform show -json

>_

Providers required by configuration:
.
└── provider[registry.terraform.io/hashicorp/local]

Providers required by state:

provider[registry.terraform.io/hashicorp/local]

$ terraform providers

terraform providers

- Mirroring hashicorp/local...
- Selected v1.4.0 with no constraints
- Downloading package for windows_amd64...
- Package authenticated: signed by HashiCorp

$ terraform providers mirror /root/terraform/new_local_file

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}
file_permission = "0700"

>_

terraform output

content = We love pets!
pet-name = huge-owl

$ terraform output

pet-name = huge-owl

$ terraform output pet-name

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"
file_permission = "0777"

}
resource "random_pet" "cat" {

length = "2"
separator = "-"

}
output content {

value = local_file.pet.content
sensitive = false
description = "Print the content of the file"

}
output pet-name {

value = random_pet.cat.id
sensitive = false
description = "Print the name of the pet"

}

>_

terraform refresh

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"
file_permission = "0777"

}
resource "random_pet" "cat" {

length = "2"
separator = "-"

}

random_pet.cat: Refreshing state... [id=huge-owl]
local_file.pet: Refreshing state...
[id=cba595b7d9f94ba1107a46f3f731912d95fb3d2c]

$ terraform refresh

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this
plan, but will not be
persisted to local or remote state storage.

random_pet.cat: Refreshing state... [id=huge-owl]
local_file.pet: Refreshing state...
[id=cba595b7d9f94ba1107a46f3f731912d95fb3d2c]
--

No changes. Infrastructure is up-to-date.

$ terraform plan

>_

terraform graph

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "My favorite pet is ${random_pet.m

y-pet.id}"
}
resource "random_pet" "my-pet" {

prefix = "Mr"
separator = "."
length = "1"

}

digraph {
compound = "true"
newrank = "true"
subgraph "root" {

"[root] local_file.pet (expand)" [label =
"local_file.pet", shape = "box"]

"[root]
provider[\"registry.terraform.io/hashicorp/local\"]" [label =
"provider[\"registry.terraform.io/hashicorp/local\"]", shape =
"diamond"]

"[root]
provider[\"registry.terraform.io/hashicorp/random\"]" [label =
"provider[\"registry.terraform.io/hashicorp/random\"]", shape =
"diamond"]

"[root] random_pet.my-pet (expand)" [label =
"random_pet.my-pet", shape = "box"]

"[root] local_file.pet (expand)" -> "[root]
provider[\"registry.terraform.io/hashicorp/local\"]"

"[root] local_file.pet (expand)" -> "[root]
random_pet.my-pet (expand)"

"[root] meta.count-boundary (EachMode fixup)" -
> "[root] local_file.pet (expand)"

"[root]
provider[\"registry.terraform.io/hashicorp/local\"] (close)" ->
"[root] local_file.pet (expand)"

$ terraform graph

>_

terraform graph

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "My favorite pet is ${random_pet.m

y-pet.id}"
}
resource "random_pet" "my-pet" {

prefix = "Mr"
separator = "."
length = "1"

}

$ apt update

$ apt install graphviz -y

$ terraform graph | dot -Tsvg > graph.svg

Mutable vs Immutable
Infrastructure

>_

terraform validate

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}
file_permission = "0700"

$ terraform apply

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"

~ file_permission = "0777" -> "0700" # forces
replacement

filename = "/root/pet.txt"
~ id =

"5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -> (known after
apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

local_file.pet: Destroying...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s
local_file.pet: Creating...

v1.17

v1.18

v1.19

upgrade-nginx.sh

v1.17

v1.18

v1.19

v1.17

v1.18

v1.17

v1.18

v1.19

Configuration Drift

v1.17

1

v1.17

2

v1.17

3

4 5 6

v1.17

3

v1.18

4

v1.18

6

v1.18

5

v1.18

4

v1.18

6

v1.18

5

Immutable Infrastructure

v1.18

6

v1.17

3

v1.18

4

v1.18

5

Immutable Infrastructure

>_main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}
file_permission = "0700"

$ terraform apply

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"

~ file_permission = "0777" -> "0700" # forces
replacement

filename = "/root/pet.txt"
~ id =

"5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -> (known after
apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

local_file.pet: Destroying...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s
local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Immutable Infrastructure

local_file.pet: Destroying...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s
local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

Lifecycle Rules

>_main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

file_permission = "0700"

lifecycle {
create_before_destroy = true

}

$ terraform apply

local_file.pet must be replaced
-/+ resource "local_file" "pet" {

content = "We love pets!"
directory_permission = "0777"

~ file_permission = "0777" -> "0755" # forces replacement
filename = "/root/pet.txt"

~ id =
"5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf" -> (known after apply)

}

Plan: 1 to add, 0 to change, 1 to destroy.

...

local_file.pet: Creating...
local_file.pet: Creation complete after 0s
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]

local_file.pet: Destroying...
[id=5f8fb950ac60f7f23ef968097cda0a1fd3c11bdf]
local_file.pet: Destruction complete after 0s

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

create_before_destroy

>_main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

file_permission = "0700"

lifecycle {
create_before_destroy = true

$ terraform apply

local_file.my-pet: Refreshing state...
[id=cba595b7d9f94ba1107a46f3f731912d95fb3d2c]

Error: Instance cannot be destroyed

on main.tf line 1:
1: resource "local_file" "my-pet" {

Resource local_file.my-pet has
lifecycle.prevent_destroy set, but the plan calls
for this resource to be destroyed. To avoid this error
and continue with the plan, either disable
lifecycle.prevent_destroy or reduce the scope of the
plan using the -target flag.

prevent_destroy

lifecycle {
prevent_destroy = true

}

ignore_changes

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = “ProjectA-Webserver"
}

}

>_

$ terraform apply

...
Terraform will perform the following actions:

aws_instance.webserver will be created
+ resource "aws_instance" "webserver" {

+ ami = "ami-0edab43b6fa892279"
+ get_password_data = false
+ host_id = (known after apply)
+ id = (known after apply)
+ instance_state = (known after apply)
+ instance_type = "t2.micro“
+ tags {

+ "Name" = "ProjectA-WebServer"
}

.
aws_instance.webserver: Creation complete after 33s [id=i-
05cd83b221911acd5]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

ignore_changes

>_

$ terraform apply

aws_instance.webserver: Refreshing state... [id=i-
05cd83b221911acd5]

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

~ update in-place

Terraform will perform the following actions:

aws_instance.webserver will be updated in-place
~ resource "aws_instance" "webserver" {

.

.
~ tags = {

~ "Name" = "ProjectB-WebServer" -> "ProjectA-WebServer"
}

.

.
Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = “ProjectA-Webserver"
}

}

>_

ignore_changes

$ terraform apply

aws_instance.webserver: Refreshing state... [id=i-
05cd83b221911acd5]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = “ProjectA-Webserver"
}

}

lifecycle {
ignore_changes = [

tags

]
}

ignore_changes
main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = “ProjectA-Webserver"
}

}

lifecycle {
ignore_changes = [

tags

]
}

,ami
ignore_changes = all

>_

$ terraform apply

aws_instance.webserver: Refreshing state... [id=i-
05cd83b221911acd5]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Order Option

1 create_before_destroy
Create the resource first and

then destroy older

2 prevent_destroy Prevents destroy of a resource

3 ignore_changes
Ignore Changes to Resource

Attributes (specific/all)

Data Sources

Real World Infrastructure terraform.tfstate

Real World Infrastructure terraform.tfstate

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

pets.txtdogs.txt

>_

Dogs are awesome!

$ cat /root/dog.txt

Real World Infrastructure terraform.tfstate

main.tf

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"

}

pets.txtdogs.txt

>_

Dogs are awesome!

$ cat /root/dog.txt

data "local_file" "dog" {
filename = "/root/dog.txt"

}

Data Sources

data.local_file.dog.content

Resource Data Source

Keyword: resource Keyword: data

Creates, Updates, Destroys Infrastructure Only Reads Infrastructure

Also called Managed Resources Also called Data Resources

terraform.tfstate

Meta Arguments

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}
variable "content" {
default = "I love pets!"

}

resource "local_file" "pet" {
filename = var.filename
content = var.content

}

create_files.sh

#!/bin/bash

for i in {1..3}
do
touch /root/pet${i}

done

Iteration filename

1 /root/pet1

2 /root/pet2

3 /root/pet3

>_

-rw-r--r-- 1 root root 0 Sep 9 02:04 pet2
-rw-r--r-- 1 root root 0 Sep 9 02:04 pet1
-rw-r--r-- 1 root root 0 Sep 9 02:04 pet3

$ ls -ltr /root/

Shell Scripts

main.tfmain.tf

resource "local_file" "pet" {
filename = var.filename
content = var.content
depends_on = [
random_pet.my-pet

]
}
resource "random_pet" "my-pet" {
prefix = var.prefix
separator = var.separator
length = var.length

}

resource "local_file" "pet" {
filename = "/root/pets.txt"
content = "We love pets!"
file_permission = "0700
lifecycle {
create_before_destroy = true

}
}

depends_on lifecycle

Meta Arguments

Count

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

count

>_

[Output Truncated]
Terraform will perform the following actions:
...
local_file.pet[2] will be created

+ resource "local_file" "pet" {
+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

Plan: 3 to add, 0 to change, 0 to destroy.

$ terraform plan

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

count

>_

[Output Truncated]
.

local_file.pet[2]: Creating...
local_file.pet[0]: Creating...
local_file.pet[1]: Creating...
local_file.pet[0]: Creation complete after 0s
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]
local_file.pet[2]: Creation complete after 0s
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]
local_file.pet[1]: Creation complete after 0s
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]

Apply complete! Resources: 3 added, 0 changed, 0
destroyed.

$ terraform apply

pet[0] pet[1] pet[2]

pet.txt

$ ls /root

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

count

>_

[Output Truncated]
.

local_file.pet[2]: Creating...
local_file.pet[0]: Creating...
local_file.pet[1]: Creating...
local_file.pet[0]: Creation complete after 0s
[id=7e4db4fbfdbb108bdd04692602bae3e9bd1e1b68]
local_file.pet[2]: Creation complete after 0s

$ terraform apply
pet[0] pet[1] pet[2]

pet.txt

$ ls /root

[count.index]

pets.txt
dogs.txt
cats.txt

$ ls /root

default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

Length Function

>_

[Output Truncated]
.

local_file.pet[2]: Creating...
local_file.pet[0]: Creating...

$ terraform apply

pet[0] pet[1] pet[2]

pet.txt

$ ls /root

[count.index]

pets.txt
dogs.txt
cats.txt

$ ls /root

length(var.filename)

default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

,
"/root/cows.txt",
"/root/ducks.txt"

Length Function

variable function value

fruits = ["apple", "banana", "orange"] length(fruits) 3

cars = [“honda”, “bmw”, “nissan”, “kia”] length(cars) 4

colors = [“red”, “purple”] length(colors) 2

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

LengthFunction

>_

[Output Truncated]
.

local_file.pet[2]: Creating...
local_file.pet[0]: Creating...

$ terraform apply

pet[0] pet[1] pet[2]

pet.txt

$ ls /root

[count.index]

pets.txt
dogs.txt
cats.txt

$ ls /root

length(var.filename)

default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

,
"/root/cows.txt",
"/root/ducks.txt"

>_

.

.
Terraform will perform the following actions:

local_file.pet[0] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"
+ id = (known after apply)

}

local_file.pet[1] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/dogs.txt"
+ id = (known after apply)

}

local_file.pet[2] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/cats.txt"
+ id = (known after apply)

}

$ terraform apply

>_

pet.txt
dogs.txt
cats.txt

$ ls /root

variables.tfmain.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

pet[0] pet[1] pet[2]

[count.index]

length(var.filename)

default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

variables.tf

main.tf

variable "filename" {
default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

pet[0] pet[1] pet[2]

[count.index]

length(var.filename)

default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

>_

...
local_file.pet[0] must be replaced

-/+ resource "local_file" "pet" {
directory_permission = "0777"
file_permission = "0777"

~ filename = "/root/pets.txt" -> "/root/dogs.txt" #
forces replacement

}
local_file.pet[1] must be replaced

-/+ resource "local_file" "pet" {
directory_permission = "0777"
file_permission = "0777"

~ filename = "/root/dogs.txt" -> "/root/cats.txt" #
forces replacement

}
local_file.pet[2] will be destroyed
- resource "local_file" "pet" {

- directory_permission = "0777" -> null
- file_permission = "0777" -> null

$ terraform plan

Replace Replace Destroy

main.tf

resource "local_file" "pet" {
filename = var.filename

}

count = 3

pet[0] pet[1] pet[2]

[count.index]

length(var.filename)

>_

output "pets" {
value = local_file.pet

}

Outputs:

pets = [
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/pets.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/dogs.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/cats.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
]

$ terraform output

variables.tf

variable "filename" {
default = "/root/pets.txt"

}

pet[0] pet[1] pet[2]
default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

pets.txt dogs.txt cats.txt

variables.tf

variable "filename" {
default = "/root/pets.txt"

}

pet[0] pet[1]
default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

dogs.txt cats.txt

Resource Resource Updates Action

pet[0] /root/pets.txt" -> "/root/dogs.txt" Destroy and Replace

pet[1] "/root/dogs.txt" -> "/root/cats.txt" Destroy and Replace

pet[2] Does not Exist Destroy

for_each

variables.tfmain.tf

variable "filename" {

default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

for_each

>_
pet[0] pet[1] pet[2]

[count.index] default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

each.value

length(var.filename)for_each = var.filename

Error: Invalid for_each argument

on main.tf line 2, in resource "local_file" "pet":
2: for_each = var.filename

The given "for_each" argument value is unsuitable: the "for_each"
argument must be a map, or set of strings, and you have provided a value
of type list of string.

$ terraform plan

type=list(string)type=set(string)

Terraform will perform the following actions:
local_file.pet["/root/cats.txt"] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/cats.txt"

}
... <output trimmed>
Plan: 3 to add, 0 to change, 0 to destroy.

--

$ terraform plan

variables.tfmain.tf

variable "filename" {

default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

for_each

>_
pet[0] pet[1] pet[2]

[count.index] default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

each.value

length(var.filename)for_each = var.filename

Error: Invalid for_each argument

on main.tf line 2, in resource "local_file" "pet":
2: for_each = var.filename

The given "for_each" argument value is unsuitable: the "for_each"
argument must be a map, or set of strings, and you have provided a value
of type list of string.

$ terraform plan

type=list(string)type=set(string)

Terraform will perform the following actions:
local_file.pet["/root/cats.txt"] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/cats.txt"

}
... <output trimmed>
Plan: 3 to add, 0 to change, 0 to destroy.

--

$ terraform plan

toset(var.filename)

variables.tfmain.tf

variable "filename" {

default = "/root/pets.txt"

}

resource "local_file" "pet" {
filename = var.filename

}

count = 3

for_each

>_
pet[0] pet[1] pet[2]

[count.index] default = [
"/root/pets.txt",
"/root/dogs.txt",
"/root/cats.txt"

]

each.value

length(var.filename)for_each = var.filename

Error: Invalid for_each argument

on main.tf line 2, in resource "local_file" "pet":
2: for_each = var.filename

The given "for_each" argument value is unsuitable: the "for_each"
argument must be a map, or set of strings, and you have provided a value
of type list of string.

$ terraform plan

type=list(string)

Terraform will perform the following actions:
local_file.pet["/root/pets.txt"] will be destroyed
- resource "local_file" "pet" {

- directory_permission = "0777" -> null
- file_permission = "0777" -> null
- filename = "/root/pets.txt" -> null

}

Plan: 0 to add, 0 to change, 1 to destroy.

$ terraform plan

toset(var.filename)

output "pets" {
value = local_file.pet

}

Terraform will perform the following actions:
local_file.pet["/root/cats.txt"] will be created
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/cats.txt"

}
... <output trimmed>
Plan: 3 to add, 0 to change, 0 to destroy.

--

$ terraform plan
Terraform will perform the following actions:
local_file.pet["/root/pets.txt"] will be destroyed
+ resource "local_file" "pet" {

+ directory_permission = "0777"
+ file_permission = "0777"
+ filename = "/root/pets.txt"

}
... <output trimmed>
Plan: 0 to add, 0 to change, 1 to destroy.

--

$ terraform plan

main.tf

resource "local_file" "pet" {
filename = var.filename

}

count = 3

for_each

>_

pet[0] pet[1] pet[2]

[count.index]each.value

length(var.filename)for_each = var.filenametoset(var.filename)

output "pets" {
value = local_file.pet

}

pets = {
"/root/cats.txt" = {

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/cats.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

}

"/root/dogs.txt" = {
"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/dogs.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

}
}

$ terraform output

for_each

>_

pets = {
"/root/cats.txt" = {

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/cats.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

}

"/root/dogs.txt" = {
"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/dogs.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

}
}

$ terraform output

>_

pets = [
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/pets.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/dogs.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
{

"directory_permission" = "0777"
"file_permission" = "0777"
"filename" = "/root/cats.txt"
"id" = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

},
]

$ terraform output

count

Version Constraints

>_

$ terraform init
Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/local...
- Installing hashicorp/local v1.4.0...
- Installed hashicorp/local v1.4.0 (signed by HashiCorp)

The following providers do not have any version constraints
in configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking
changes, we recommend adding version constraints in a
required_providers block
in your configuration, with the constraint strings suggested
below.

* hashicorp/local: version = "~> 1.4.0"

Terraform has been successfully initialized!

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

terraform {
required_providers {
local = {
source = "hashicorp/local"
version = "1.4.0"

}
}

}

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

terraform {
required_providers {
local = {
source = "hashicorp/local"
version = "1.4.0"

}
}

}

>_

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/local versions matching "1.4.0"...
- Installing hashicorp/local v1.4.0...
- Installed hashicorp/local v1.4.0 (signed by HashiCorp)

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see
any changes that are required for your infrastructure. All
Terraform commands
should now work.

If you ever set or change modules or backend configuration for
Terraform,
rerun this command to reinitialize your working directory. If
you forget, other
commands will detect it and remind you to do so if necessary.

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

terraform {
required_providers {
local = {
source = "hashicorp/local"
version = "1.4.0"

}
}

}

version = "!= 2.0.0"version = "< 1.4.0"version = "> 1.1.0"version = "> 1.2.0, < 2.0.0, != 1.4.0"

>_

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/local versions matching "> 1.2.0, <
2.0.0, != 1.4.0"...
- Installing hashicorp/local v1.3.0...
- Installed hashicorp/local v1.3.0 (signed by
HashiCorp)

Terraform has been successfully initialized!

main.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "We love pets!"

}

terraform {
required_providers {
local = {
source = "hashicorp/local"
version = "1.4.0"

}
}

}

version = "!= 2.0.0"version = "< 1.4.0"version = "> 1.1.0"version = "> 1.2.0, < 2.0.0, != 1.4.0"

>_

version = "~> 1.2"version = "~> 1.2.0"

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/local versions matching "~>
1.2.0"...
- Installing hashicorp/local v1.2.2...
- Installed hashicorp/local v1.2.2 (signed by
HashiCorp)

Terraform has been successfully initialized!

Getting Started with
AWS

Why AWS?

https://aws.amazon.com/blogs/aws/aws-named-as-a-cloud-leader-for-the-10th-consecutive-year-in-gartners-infrastructure-platform-services-magic-quadrant/

Why AWS?

Compute Databases Storage IoT
Machine

Learning

Analytic

s

Why AWS?

US East (Ohio) Region

US West (Oregon) Region

US West (Northern California) Region

GovCloud (US-West) Region

GovCloud (US-East) Region

Canada (Central) Region

South America (São Paulo) Region

Europe (London) Region

Europe (Paris) Region

Europe (Ireland) Region

Europe (Milan) Region

Europe (Frankfurt) Region Mainland China (Beijing) Region

Asia Pacific (Sydney) Region

Asia Pacific (Tokyo) Region

Asia Pacific (Mumbai) Region

Asia Pacific (Hong Kong) Region

Why AWS with Terraform?

EC2 DynamoDB Elastic Block Store

Simple

Storage Service (S3)

Route 53 VPC

Getting Started with AWS

Demo: Setup an AWS Account

Demo: IAM

Introduction to IAM

Programmatic Access

IAM with Terraform

Introduction to AWS S3

S3 with Terraform

Demo DynamoDB

Introduction to DynamoDB

DynamoDB with Terraform

Introduction to
IAM

Root Account

tej@example.com

Identity and Access Management in AWS

EC2 DynamoDB Elastic Block Store

Simple

Storage Service (S3)

Route 53 VPC

Every Other Service on AWS

Linux Root User

Windows Admin User

AWS Root Account

AWS Root Account

Lucy

Max

Abdul

Lee

Lucy

Username
Password

console.aws.com

Access Key ID
Secret Access Key

$ aws s3api create-bucket –bucket my-bucket –region us-east-1

AdministratorAccess

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

}

AdministratorAccess
Policy

Lucy

https://console.aws.amazon.com/iam/home?region=us-west-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAdministratorAccess

AdministratorAccess

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

https://console.aws.amazon.com/iam/home?region=us-west-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAdministratorAccess

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Job Function Policy Name

Administrator AdministratorAccess

Billing Billing

Database Administrator DatbaseAdministrator

Network Administrator NetworkAdministrator

View-Only User ViewOnlyAccess

AmazonS3FullAccess

Max

Abdul

Lee

AmazonEC2FullAccess

AmazonS3FullAccess

Max

Abdul

Lee

AmazonEC2FullAccess

Developer Group

IAM Group

AmazonS3FullAccess

Max

Abdul

Lee

AmazonEC2FullAccess

Developer Group

IAM Group

?

AmazonS3FullAccess

AWS Account A

Applications

Corporate Directory

EC2 DynamoDB Elastic Block Store

Simple

Storage Service (S3)

Route 53 VPC

Every Other Service on AWS

CreateEC2TagsPolicy

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:DeleteTags",
"ec2:CreateTags"

],
"Resource": "*"

}
]

Programmatic
Access

Lucy

Username
Password

console.aws.com

Access Key ID
Secret Access Key

$ aws s3api create-bucket –bucket my-bucket –region us-east-1

https://aws.amazon.com/cli/

Linux / MacOS CLI
(bash/sh/zsh e.t.c)

AWS CLI

Command Prompt/
Power Shell

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64-2.0.30.zip" -o "awscliv2.zip"
$ unzip awscliv2.zip
$ sudo ./aws/install

Download and Install https://awscli.amazonaws.com/AWSCLIV2.msi

C:\> aws –version
aws-cli/2.0.47 Python/3.7.4 Windows/10 botocore/2.0.0

$ aws --version
aws-cli/2.0.47 Python/3.7.4 Linux/4.14.133-113.105.amzn2.x86_64 botocore/2.0.0

Download and Install

https://awscli.amazonaws.com/AWSCLIV2.pkg

$ aws –version
aws-cli/2.0.47 Python/3.7.4 Darwin/18.7.0 botocore/2.0.0

https://awscli.amazonaws.com/AWSCLIV2.msi
https://awscli.amazonaws.com/AWSCLIV2.pkg

$ aws configure

AWS Access Key ID [None]:

AWS Secret Access Key [None]:

Default region name [None]:

Default output format [None]:

AKIAI44QH8DHBEXAMPLE

je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

us-west-2

json

$ cat .aws/config/config

[default]
region = us-west-2
output = text

$ cat .aws/config/credentials

[default]
aws_access_key_id = AKIAI44QH8DHBEXAMPLE
aws_secret_access_key = je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

$ aws <command> <subcommand> [options and parameters]

$ aws iam create-user --user-name lucy

{
"User": {

"UserName": "lucy",
"Tags": [],
"CreateDate": "2020-09-15T23:40:11.168Z",
"UserId": "h9r2sc5br8ss7uzhs2qm",
"Path": "/",
"Arn": "arn:aws:iam::000000000000:user/lucy"

}
}

Command Value

command iam

subcommand create-user

option --user-name

parameter lucy

$ aws help

AWS()

NAME
aws -

DESCRIPTION
The AWS Command Line Interface is a unified tool to

manage your AWS
services.

SYNOPSIS
aws [options] <command> <subcommand> [parameters]

Use aws command help for information on a specific
command. Use aws

help topics to view a list of available help topics. The
synopsis for

each command shows its parameters and their usage.
Optional parameters

are shown in square brackets.
.
.
[Output Truncated]

$ aws iam help

IAM()

NAME
iam -

DESCRIPTION
AWS Identity and Access Management (IAM) is a web service

for securely
controlling access to AWS services. With IAM, you can

centrally manage
users, security credentials such as access keys, and

permissions that
control which AWS resources users and applications can

access. For more
information about IAM, see AWS Identity and Access

Management (IAM) and
the AWS Identity and Access Management User Guide .

AVAILABLE COMMANDS
o add-client-id-to-open-id-connect-provider

o add-role-to-instance-profile
.
.
[Output Truncated]

$ aws <command> help

$ aws iam create-user help

https://docs.aws.amazon.com/cli/latest/reference

NAME
create-user -

DESCRIPTION
Creates a new IAM user for your AWS account.

The number and size of IAM resources in an AWS account are
limited. For

more information, see IAM and STS Quotas in the IAM User
Guide .

See also: AWS API Documentation

See 'aws help' for descriptions of global parameters.

SYNOPSIS
create-user

[--path <value>]
--user-name <value>
[--permissions-boundary <value>]
[--tags <value>]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]

$ aws <command> <subcommand> help

IAM with Terraform

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/iam_user

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

Block

Name

Resource

Type

Resource

Name

aws=provider

iam_user=resourc

e

Arguments

NAME TAGS

>_

$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/aws...
- Installing hashicorp/aws v3.6.0...
- Installed hashicorp/aws v3.6.0 (signed by HashiCorp)

The following providers do not have any version constraints in
configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions that may
contain breaking changes, we recommend adding version
constraints in a required_providers block in your configuration,
with the constraint strings suggested below.

* hashicorp/aws: version = "~> 3.6.0"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform
plan" to see
any changes that are required for your infrastructure. All
Terraform commands
should now work.

If you ever set or change modules or backend configuration for
Terraform,

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

>_

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

$ terraform plan

provider.aws.region
The region where AWS operations will take place. Examples
are us-east-1, us-west-2, etc.

Enter a value: us-west-1
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but
will not be
persisted to local or remote state storage.

Error: error configuring Terraform AWS Provider: no valid
credential sources for Terraform AWS Provider found.

Please see
https://registry.terraform.io/providers/hashicorp/aws
for more information about providing credentials.

Error: NoCredentialProviders: no valid providers in chain.
Deprecated.

For verbose messaging see
aws.Config.CredentialsChainVerboseErrors

https://registry.terraform.io/providers/hashicorp/aws

>_

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

provider "aws" {
region = "us-west-2"
access_key = "AKIAI44QH8DHBEXAMPLE"
secret_key = "je7MtGbClwBF/2tk/h3yCo8n…"

}

$ terraform plan
.
.
+ create

Terraform will perform the following actions:

aws_iam_user.admin-user will be created
+ resource "aws_iam_user" "admin-user" {

+ arn = (known after apply)
+ force_destroy = false
+ id = (known after apply)
+ name = "Lucy"
+ path = "/"
+ tags = {

+ "Description" = "Technical Team Lead"
}

+ unique_id = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.

Note: You didn't specify an "-out" parameter to save this
plan, so Terraform

>_

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

provider "aws" {
region = "us-west-2"
access_key = "AKIAI44QH8DHBEXAMPLE"
secret_key = "je7MtGbClwBF/2tk/h3yCo8n…"

}

$ terraform apply

aws_iam_user.admin-user will be created
+ resource "aws_iam_user" "admin-user" {

+ arn = (known after apply)
+ force_destroy = false
+ id = (known after apply)
+ name = "Lucy"
+ path = "/"
+ tags = {

+ "Description" = "Technical Team Lead"
}

+ unique_id = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.

aws_iam_user.admin-user: Creating...
aws_iam_user.admin-user: Creation complete after 1s
[id=Lucy]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

.aws/config/credentials

[default]
aws_access_key_id =
aws_secret_access_key =

provider "aws" {
region = "us-west-2"
access_key = "AKIAI44QH8DHBEXAMPLE"
secret_key = "je7MtGbClwBF/2tk/h3yCo8n…"

}

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

.aws/config/credentials

provider "aws" {
region = "us-west-2"

}

>_

$ export AWS_ACCESS_KEY_ID=

$ export AWS_SECRET_ACCESS_KEY_ID=

[default]
aws_access_key_id = AKIAI44QH8DHBEXAMPLE
aws_secret_access_key = je7MtGbClwBF/2tk/h3yCo8n…

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

.aws/config/credentials

[default]
aws_access_key_id =
aws_secret_access_key =

provider "aws" {
region = "us-west-2"

}

>_

$ export AWS_ACCESS_KEY_ID=AKIAI44QH8DHBEXAMPLE

$ export AWS_SECRET_ACCESS_KEY_ID=je7MtGbClwBF/2tk/h3yCo8n…

$ export AWS_REGION=us-west-2

IAM policies with
Terraform

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

} AdministratorAccess
Policy

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

} AdministratorAccess
Policy

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

[COMMAND] <<DELIMITER
Line1
Line2
Line3

DELIMITER

Heredoc Syntax

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

<<EOF

[COMMAND] <<DELIMITER
Line1
Line2
Line3

DELIMITER

Heredoc Syntax

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

} AdministratorAccess
Policy

EOF

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {

Description = "Technical Team Leader"
}

}

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

<<EOF

[COMMAND] <<DELIMITER
Line1
Line2
Line3

DELIMITER

Heredoc Syntax

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

}

AdministratorAccess
Policy

??
resource "aws_iam_user_policy_attachment" "lucy-admin-access" {

user = aws_iam_user.admin-user.name

policy_arn = aws_iam_policy.adminUser.arn

}

EOF

>_main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {

Description = "Technical Team Leader"
}

}

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

<<EOF

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

}

resource "aws_iam_user_policy_attachment" "lucy-admin-access" {

user = aws_iam_user.admin-user.name

policy_arn = aws_iam_policy.adminUser.arn

}

EOF

aws_iam_policy.adminUser will be created
+ resource "aws_iam_policy" "adminUser" {

+ arn = (known after apply)
+ id = (known after apply)
+ name = "AdminUsers"
+ path = "/"
+ policy = jsonencode(

{
+ Statement = [

+ {
+ Action = "*"
+ Effect = "Allow"
+ Resource = "*"

},
]

+ Version = "2012-10-17"
}

)
}

.

.[Output Truncated]
aws_iam_user.lucy: Creating...
aws_iam_policy.adminUser: Creating...
aws_iam_user.lucy: Creation complete after 0s [id=lucy]
aws_iam_policy.adminUser: Creation complete after 0s
[id=arn:aws:iam::000000000000:policy/AdminUsers]
aws_iam_user_policy_attachment.lucy-admin-access: Creating...
aws_iam_user_policy_attachment.lucy-admin-access: Creation complete
after 0s [id=lucy-20200919034158686100000001]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

$ terraform apply

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {

Description = "Technical Team Leader"
}

}

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

<<EOF

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

}

resource "aws_iam_user_policy_attachment" "lucy-admin-access" {

user = aws_iam_user.admin-user.name

policy_arn = aws_iam_policy.adminUser.arn

}

EOF

admin-policy.json

main.tf

resource "aws_iam_user" "admin-user" {
name = "lucy"
tags = {
Description = "Technical Team Leader"

}
}

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = ?

}

<<EOF

resource "aws_iam_user_policy_attachment" "lucy-admin-access" {

user = aws_iam_user.admin-user.name

policy_arn = aws_iam_policy.adminUser.arn

}

EOF

admin-policy.json

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "*",
"Resource": "*"

}
]

}
file("admin-policy.json")

AWS S3

all-pets

pets.jsondog.jpgcat.mp4

videosimages

Object # Name

1 pets.json

2 dog.jpg

3 cat.mp4

4 pictures/cat.jpg

5 videos/dog.mp4

Unique Bucket Name

DNS Compliant Name

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

Files size between 0 to

5TB

https://<bucket_name>.<region>.amazonaws.com

https://all-pets.us-west-1.amazonaws.com

Object # Name Address

1 pets.json https://all-pets.us-west-1.amazonaws.com/pets.json

2 dog.jpg https://all-pets.us-west-1.amazonaws.com/dog.jpg

3 cat.mp4 https://all-pets.us-west-1.amazonaws.com/cat.mp4

4 pictures/cat.jpg https://all-pets.us-west-1.amazonaws.com/pictures/cat.jpg

5 videos/dog.mp4 https://all-pets.us-west-1.amazonaws.com/videos/dog.mp4

dog.jpg

Object data
Value = Data

Key = dog.jpg

all-pets

Owner = Lucy

Size = 5MB

Last Modified = Jan 26, 2020 12:55:21 AM GMT-0500
Metadata

dog.jpg

all-pets

Bucket Policies

Access Control Lists

dog.jpg

all-pets

Bucket Policies

Access Control Lists

{
"Version": "2012-10-17",
"Statement": [

{
"Action": [

"s3:GetObject"
],
"Effect": "Allow",
"Resource": "arn:aws:s3:::all-pets/*",
"Principal": {

"AWS": [
"arn:aws:iam::123456123457:user/Lucy"

]
}

}
]

}

read-objects.json

Lucy

S3 with Terraform

main.tf

resource "aws_s3_bucket" "finance" {
bucket = "finanace-21092020"
tags = {

Description = "Finance and Payroll"
}

}

>_

$ terraform apply

Terraform will perform the following actions:

aws_s3_bucket.finance will be created
+ resource "aws_s3_bucket" "finance" {

+ acceleration_status = (known after apply)
+ acl = "private"
+ arn = (known after apply)
+ bucket = "finanace-21092020"

.

.
Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_s3_bucket.finance: Creating...
aws_s3_bucket.finance: Creation complete after 0s
[id=finanace-21092020]

Apply complete! Resources: 1 added, 0 changed, 0
destroyed.

main.tf

resource "aws_s3_bucket" "finance" {
bucket = "finanace-21092020"
tags = {

Description = "Finance and Payroll"
}

}

>_

resource "aws_s3_bucket_object" "finance-2020" {
content = "/root/finance/finance-2020.doc"
key = "finance-2020.doc"
bucket = aws_s3_bucket.finance.id

}

.

.
Terraform will perform the following actions:

aws_s3_bucket_object.finance-2020 will be created
+ resource "aws_s3_bucket_object" "finance-2020" {

+ acl = "private"
+ bucket = "finanace-21092020"
+ content = "/root/finance/finance-

2020.doc"
+ force_destroy = false

+ id = (known after apply)
+ key = "finance/finance-

2020.doc"

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_s3_bucket_object.finance-2020: Creating...
aws_s3_bucket_object.finance-2020: Creation complete
after 0s [id=finance/finance-2020.doc]

$ terraform apply

main.tf

resource "aws_s3_bucket" "finance" {
bucket = "finanace-21092020"
tags = {

Description = "Finance and Payroll"
}

}

resource "aws_s3_bucket_object" "finance-2020" {
content = "/root/finance/finance-2020.doc"
key = "finance-2020.doc"
bucket = aws_s3_bucket.finance.id

}

AWS

data "aws_iam_group" "finance-data" {
group_name = "finance-analysts"

}

finance-analystsfinance-21092020 finance-2020.doc

terraform.tfstate

finance-data

resource "aws_s3_bucket_object" "finance-2020" {
content = "/root/finance/finance-2020.doc"
key = "finance-2020.doc"
bucket = aws_s3_bucket.finance.id

}

data "aws_iam_group" "finance-data" {
group_name = "finance-analysts"

}

resource "aws_s3_bucket_policy" "finance-policy" {
bucket = aws_s3_bucket.finance.id
policy = <<EOF

EOF
}

{
"Version": "2012-10-17",
"Statement": [

{
"Action": “*",
"Effect": "Allow",
"Resource": "arn:aws:s3:::<<bucket-name>>/*",
"Principal": {

"AWS": [
“<< arn >>"

]
}

}
]

}

read-objects.json

resource "aws_s3_bucket_object" "finance-2020" {
content = "/root/finance/finance-2020.doc"
key = "finance-2020.doc"
bucket = aws_s3_bucket.finance.id

}

data "aws_iam_group" "finance-data" {
group_name = "finance-analysts"

}

resource "aws_s3_bucket_policy" "finance-policy" {
bucket = aws_s3_bucket.finance.id
policy = <<EOF

EOF
}

{
"Version": "2012-10-17",
"Statement": [

{
"Action": “*",
"Effect": "Allow",
"Resource": "arn:aws:s3:::<<bucket-name>>/*",
"Principal": {

"AWS": [
“<< arn >>"

]
}

}
]

}

${aws_s3_bucket.finance.id}/*",

"${data.aws_iam_group.finance-data.arn}"

>_

.

.
Terraform will perform the following actions:

aws_s3_bucket_object.finance-2020 will be created
+ resource "aws_s3_bucket_object" "finance-2020" {

+ acl = "private"
+ bucket = "finanace-21092020"
+ content = "/root/finance/finance-2020.doc"

+ force_destroy = false
+ id = (known after apply)
+ key = "finance/finance-2020.doc"

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_s3_bucket_object.finance-2020: Creating...
aws_s3_bucket_object.finance-2020: Creation complete after 0s
[id=finance/finance-2020.doc]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

$ terraform apply

Introduction to
DynamoDB

DynamoDB

NoSQL Database

Single-Digit MilliSecond Latency

Highly Scalable

Fully Managed by AWS

Data Replicated across Regions

Manufacturer Model

Toyota Corolla

Honda Civic

Dodge Journey

Ford F150

Item 1

Item 2

Item 3

Item 4

Year VIN

2004 4Y1SL65848Z411439

2017 DY1SL65848Z411432

2014 SD1SL65848Z411443

2020 DH1SL65848Z41100

Manufacturer Model

Toyota Corolla

Honda Civic

Dodge Journey

Ford F150

{
"Manufacturer": "Toyota",
"Make": "Corolla",
"Year": 2004,
"VIN" : "4Y1SL65848Z411439"

}

{
"Manufacturer": "Honda",
"Make": "Civic",
"Year": 2017,
"VIN" : "DY1SL65848Z411432"

}

{
"Manufacturer": "Dodge",
"Make": "Journey",
"Year": 2014,
"VIN" : "SD1SL65848Z411443"

}

{
"Manufacturer": "Ford",
"Make": "F150",
"Year": 2020,
"VIN" : "DH1SL65848Z41100"

}

cars

Year VIN

2004 4Y1SL65848Z411439

2017 DY1SL65848Z411432

2014 SD1SL65848Z411443

2020 DH1SL65848Z41100

Manufacturer Model

Toyota Corolla

Honda Civic

Dodge Journey

Ford F150

{
"Manufacturer": "Honda",
"Make": "Civic",
"Year": 2017,
"VIN" : "DY1SL65848Z411432"

}

{
"Manufacturer": "Dodge",
"Make": "Journey",
"Year": 2014,
"VIN" : "SD1SL65848Z411443"

}

{
"Manufacturer": "Ford",
"Make": "F150",
"Year": 2020,
"VIN" : "DH1SL65848Z41100"

}

PRIMARY KEY

{
"Manufacturer": "Jaguar",
"Make": "",
"Year": "",
"VIN" : "LB1SL65848Z41123"
}

Year VIN

2004 4Y1SL65848Z411439

2017 DY1SL65848Z411432

2014 SD1SL65848Z411443

2020 DH1SL65848Z41100

Manufacturer Model

Toyota Corolla

Honda Civic

Dodge Journey

Ford F150

DynamoDB with
Terraform

main.tf

resource "aws_dynamodb_table" "cars" {
name = "cars"
hash_key = "VIN"
billing_mode = "PAY_PER_REQUEST"
attribute {
name = "VIN"
type = "S"

}
}

>_

+ create

Terraform will perform the following actions:

aws_dynamodb_table.cars will be created
+ resource "aws_dynamodb_table" "cars" {

+ arn = (known after apply)
+ billing_mode = "PAY_PER_REQUEST"
+ hash_key = "VIN"
+ id = (known after apply)
+ name = "cars"
+ stream_arn = (known after apply)
+ stream_label = (known after apply)
+ stream_view_type = (known after apply)

+ attribute {
+ name = "VIN"
+ type = "S"

}

+ point_in_time_recovery {
+ enabled = (known after apply)

}
.
.
aws_dynamodb_table.cars: Creating...
aws_dynamodb_table.cars: Creation complete after 0s [id=cars]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

$ terraform apply

main.tf

resource "aws_dynamodb_table" "cars" {
name = "cars"
hash_key = "VIN"
billing_mode = "PAY_PER_REQUEST"
attribute {
name = "VIN"
type = "S"

}
}

resource "aws_dynamodb_table_item" "car-items" {
table_name = aws_dynamodb_table.cars.name
hash_key = aws_dynamodb_table.cars.hash_key
item = <<EOF

EOF
}

{
"Manufacturer": "Toyota",
"Make": "Corolla",
"Year": 2004,
"VIN" : "4Y1SL65848Z411439"

}

{
"Manufacturer": "Honda",
"Make": "Civic",
"Year": 2017,
"VIN" : "DY1SL65848Z411432"

}

{
"Manufacturer": "Dodge",
"Make": "Journey",
"Year": 2014,
"VIN" : "SD1SL65848Z411443"

}

{
"Manufacturer": "Ford",
"Make": "F150",
"Year": 2020,
"VIN" : "DH1SL65848Z41100"

}

cars

main.tf

resource "aws_dynamodb_table" "cars" {
name = "cars"
hash_key = "VIN"
billing_mode = "PAY_PER_REQUEST"
attribute {
name = "VIN"
type = "S"

}
}

resource "aws_dynamodb_table_item" "car-items" {
table_name = aws_dynamodb_table.cars.name
hash_key = aws_dynamodb_table.cars.hash_key
item = <<EOF

EOF
}

{
"Manufacturer": "Toyota",
"Make": "Corolla",
"Year": 2004,
"VIN" : "4Y1SL65848Z411439"

}

{
"Manufacturer": "Honda",
"Make": "Civic",
"Year": 2017,
"VIN" : "DY1SL65848Z411432"

}

{
"Manufacturer": "Dodge",
"Make": "Journey",
"Year": 2014,
"VIN" : "SD1SL65848Z411443"

}

{
"Manufacturer": "Ford",
"Make": "F150",
"Year": 2020,
"VIN" : "DH1SL65848Z41100"

}

cars

{"S": "Toyota"},
{"S": "Corolla"},
{"N": "2004"},
{"S": "4Y1SL65848Z411439"},

>_

aws_dynamodb_table_item.car-items will be created
+ resource "aws_dynamodb_table_item" "car-items" {

+ hash_key = "VIN"
+ id = (known after apply)
+ item = jsonencode(

{
+ Manufacturer = {

+ S = "Toyota"
}

+ Model = {
+ S = "Corolla"

}
+ VIN = {

+ S = "4Y1SL65848Z411439"
}

+ Year = {
+ N = "2004"

}
}

)
+ table_name = "cars"

}

Plan: 1 to add, 0 to change, 0 to destroy.
.
.
aws_dynamodb_table_item.car-items: Creating...
aws_dynamodb_table_item.car-items: Creation complete after

$ terraform apply

Remote State

Real World Infrastructure terraform.tfstate

>_
Mapping Configuration to Real World

Tracking Metadata

Performance

Collaboration

main.tf variables.tf terraform.tfstate

$ ls

terraform.tfstatemain.tf

resource "local_file" "pet" {
filename = "/root/pet.txt"
content = "My favorite pet is Mr.Whiskers!"

}
resource "random_pet" "my-pet" {

length = 1
}
resource "local_file" "cat" {

filename = "/root/cat.txt"
content = "I like cats too!"

}

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [
{
"schema_version": 1,
"attributes": {
"ami": "ami-0a634ae95e11c6f91",

.

.

.
"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [
{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",
"volume_id": "vol-070720a3636979c22",
"volume_size": 8,
"volume_type": "gp2"

}
],

Remote State BackendsVersion Control

Lee

Abdul

terraform.tfstatemain.tf

S3 Bucket

terraform.tfstatemain.tf

terraform.tfstate

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [
{
"schema_version": 1,
"attributes": {
"ami": "ami-0a634ae95e11c6f91",

.

.

.
"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [
{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",
"volume_id": "vol-070720a3636979c22",
"volume_size": 8,
"volume_type": "gp2"

}
],

Abdul Lee

S3 Bucket

terraform.tfstatemain.tf

>_ Terminal 2>_ Terminal 1

Error: Error locking state: Error acquiring the state
lock: resource temporarily unavailable
Lock Info:

ID: fefe3806-007c-084b-be61-cef4cdc77dee
Path: terraform.tfstate
Operation: OperationTypeApply
Who: root@iac-server
Version: 0.13.3
Created: 2020-09-22 20:35:27.051330492 +0000 UTC
Info:

Terraform acquires a state lock to protect the state from
being written
by multiple users at the same time. Please resolve the
issue above and try
again. For most commands, you can disable locking with
the "-lock=false"
flag, but this is not recommended.

$ terraform apply

.

.

."
+ server_side_encryption = (known after apply)
+ storage_class = (known after apply)
+ version_id = (known after apply)

}

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_s3_bucket_object.finance-2020: Creating...
aws_s3_bucket.finance: Creating...
aws_s3_bucket_object.finance-2020: Still creating...
[10s elapsed]
aws_s3_bucket.finance: Still creating... [10s
elapsed]
aws_s3_bucket_object.finance-2020: Still creating...
[20s elapsed]
aws_s3_bucket.finance: Still creating... [20s
elapsed]

$ terraform apply

Terraform State

Operation 1

Operation 2

State Locking

Local

Infrastructure

Terraform State

Operation 1

Operation 2

State Locking

Local

Remote State Backend

AWS S3

HashiCorp Consul Terraform Cloud

Google Cloud Storage

Infrastructure

Terraform State

State Locking

Remote State Backend

AWS S3

HashiCorp Consul Terraform Cloud

Google Cloud Storage

Automatically Load and Upload State

File

Many Backends Support State Locking

Security

Remote Backends
with S3

Remote Backend

Local

Remote State Backend

Terraform State State Locking

Object Value

Bucket kodekloud-terraform-state-bucket01

Key finance/terraform.tfstate

Region us-west-1

DynamoDB
Table

state-locking

main.tf

terraform {
backend "s3" {
bucket = "kodekloud-terraform-state-bucket01"
key = "finance/terraform.tfstate"
region = "us-west-1"
dynamodb_table = "state-locking"

}
}

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

>_

main.tf terraform.tfstate

$ ls

Object Value

Bucket kodekloud-terraform-state-bucket01

Key finance/terraform.tfstate

Region us-west-1

DynamoDB
Table

state-locking

terraform.tfmain.tf

resource "local_file" "pet" {​
filename = "/root/pets.txt"​
content = "We love pets!"​

}

terraform {
backend "s3" {
bucket = "kodekloud-terraform-state-bucket01"
key = "finance/terraform.tfstate"
region = "us-west-1"
dynamodb_table = "state-locking"

}
}

>_

Backend reinitialization required. Please run "terraform init". Reason: Initial configuration of the requested backend "s3"

The "backend" is the interface that Terraform uses to store state, perform operations, etc. If this message is showing up, it means
that the Terraform configuration you're using is using a custom configuration for the Terraform backend.

Changes to backend configurations require reinitialization. This allows Terraform to setup the new configuration, copy existing
state, etc. This is only done during "terraform init". Please run that command now then try again.

Error: Initialization required. Please see the error message above.

$ terraform apply

>_

$ rm –rf terraform.tfstate

>_

Initializing the backend...
Do you want to copy existing state to the new backend?

Pre-existing state was found while migrating the previous "local" backend to the newly configured "s3" backend. No existing state
was found in the newly configured "s3" backend. Do you want to copy this state to the new "s3"

backend? Enter "yes" to copy and "no" to start with an empty state.

Enter a value: yes

Successfully configured the backend "s3"! Terraform will automatically use this backend unless the backend configuration changes.

Initializing provider plugins...
- Using previously-installed hashicorp/aws v3.7.0
.
.[Output Truncated]

$ terraform init

>_

Acquiring state lock. This may take a few moments...
aws_s3_bucket.terraform-state: Refreshing state... [id=kodekloud-terraform-state-bucket01]
aws_dynamodb_table.state-locking: Refreshing state... [id=state-locking]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.
Releasing state lock. This may take a few moments.

$ terraform apply

Terraform State
Commands

>_

Sub-command

list

mv

pull

rm

show

$ vi terraform.tfstate

$ terraform state show aws_s3_bucket.finance

terraform.tfstate

{
"mode": "managed",
"type": "aws_instance",
"name": "dev-ec2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [
{
"schema_version": 1,
"attributes": {
"ami": "ami-0a634ae95e11c6f91",

.

.

.
"primary_network_interface_id": "eni-0ccd57b1597e633e0",
"private_dns": "ip-172-31-7-21.us-west-2.compute.internal",
"private_ip": "172.31.7.21",
"public_dns": "ec2-54-71-34-19.us-west-2.compute.amazonaws.com",
"public_ip": "54.71.34.19",
"root_block_device": [
{
"delete_on_termination": true,
"device_name": "/dev/sda1",
"encrypted": false,
"iops": 100,
"kms_key_id": "",
"volume_id": "vol-070720a3636979c22",
"volume_size": 8,
"volume_type": "gp2"

}
],

terraform state <subcommand> [options] [args]

>_

terraform state list [options] [address]

$ terraform state list
aws_dynamodb_table.cars
aws_s3_bucket.finance-2020922

$ terraform state list aws_s3_bucket.finance-2020922

aws_s3_bucket.finance-2020922

>_

terraform state show [options] [address]

$ terraform state show aws_s3_bucket.finance-2020922

resource "aws_s3_bucket" "terraform-state" {
acl = "private"
arn = "arn:aws:s3::: finance-2020922 "
bucket = "finance-2020922 "
bucket_domain_name = "finance-2020922.s3.amazonaws.com"
bucket_regional_domain_name = " finance-2020922.s3.us-west-1.amazonaws.com"
force_destroy = false
hosted_zone_id = "Z2F5ABCDE1ACD"
id = "finance-2020922 "
region = "us-west-1"
request_payer = "BucketOwner"
tags = {

"Descritpion" = "Bucket to store Finance and Payroll Information"
}

versioning {
enabled = false
mfa_delete = false

}
}

main.tf terraform.tfstate

>_

resource "aws_dynamodb_table" "state-locking" {
name = "state-locking"
billing_mode = "PAY_PER_REQUEST"
hash_key = "LockID"
attribute {

name = "LockID"
type = "S"

}
}

"resources": [
{

"mode": "managed",
"type": "aws_dynamodb_table",
"name": "state-locking",
"provider":

"provider[\"registry.terraform.io/hashicorp/aws\"
]",
.
.

$ terraform state mv aws_dynamodb_table.state-locking aws_dynamodb_table.state-locking-db

Move "aws_dynamodb_table.state-locking" to "aws_dynamodb_table.state-locking-db"
Successfully moved 1 object(s).

"state-locking-db"

aws_dynamodb_table.state-locking-db: Refreshing state... [id=state-locking]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

terraform state mv [options] SOURCE DESTINATION

$ terraform apply

"state-locking-db"

>_

$ ls

main.tf provider.tf

$ terraform state pull

Local

Remote State Backend

Terraform State

terraform state pull [options] SOURCE DESTINATION

{
"version": 4,
"terraform_version": "0.13.0",
"serial": 0,
"lineage": "b6e2cf0e-ef8d-3c59-1e11-c6520dcd745c",
"resources": [

{
"mode": "managed",
"type": "aws_dynamodb_table",
"name": "state-locking-db",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [

{
"schema_version": 1,
"attributes": {

...

$ terraform state pull | jq '.resources[] | select(.name == "state-locking-
db")|.instances[].attributes.hash_key'

"LockID"

>_

$ terraform state rm aws_s3_bucket.finance-2020922

Acquiring state lock. This may take a few moments...
Removed aws_s3_bucket.finance-2020922
Successfully removed 1 resource instance(s).
Releasing state lock. This may take a few moments...

terraform state rm ADDRESS

Introduction to
AWS EC2

MySQL DB (Ubuntu)

WebServer (RHEL)

ASP .NET Core (Windows)

Elastic Compute Cloud

Amazon Machine Image (AMI‘s)

Instance Types

Amazon Linux 2 AMI ami-0c2f25c1f66a1ff4d

Ubuntu Server 20.04 LTS ami-0edab43b6fa892279

Red Hat Enterprise Linux 8 ami-04312317b9c8c4b51

General Purpose

Compute Optimized

Memory Optimized

https://aws.amazon.com/ec2/instance-types/

Instance Type vCPU Memory (GB)

t2.nano 1 0.5

t2.micro 1 1

t2.small 1 2

t2.medium 2 4

t2.large 2 8

t2.xlarge 4 16

t2.2xlarge 8 32

T2 General Purpose

https://aws.amazon.com/ebs/volume-types/

EBS Volume

Name Type Description

io1 SSD For business-critical Apps

io2 SSD For latency-sensitive transactional workloads

gp2 SSD General Purpose

st1 HDD
Low Cost HDD frequently accessed,

throughput-intensive workloads

sc1 HDD
Lowest cost HDD volume designed for less

frequently accessed workloads

EBS Volume Types

Ubuntu Web Server

#!/bin/bash
sudo apt update
sudo apt install nginx
systemctl enable nginx
systemctl start nginx

Windows Instance

PowerShell PS1

Batch .bat

User Data

SSH KEY PAIR

USER / PASSWORD

Ubuntu Server 20.04 LTS

Windows Server 2019

AWS EC2
With

Terraform

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

provider.tf

provider "aws" " {
region = “us-west-1"

}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

provider.tf

provider "aws" " {
region = “us-west-1"

}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

provider.tf

provider "aws" " {
region = “us-west-1"

}

>_

$ terraform apply

aws_instance.webserver will be created
+ resource "aws_instance" "webserver" {

+ ami = "ami-0edab43b6fa892279"
.
.

+ instance_type = "t2.micro"
+ ipv6_address_count = (known after apply)
+ public_ip = (known after apply)
+ source_dest_check = true
+ subnet_id = (known after apply)
+ tags = {

+ "Description" = "An NGINX WebServer on Ubuntu"
+ "Name" = "webserver"

}
+ tenancy = (known after apply)
+ user_data = "527516162d9d8675a26b6ca97664226e6e2bff82"
+ volume_tags = (known after apply)
+ vpc_security_group_ids = (known after apply)

.

.
aws_instance.webserver: Creating...
aws_instance.webserver: Still creating... [20s elapsed]
aws_instance.webserver: Creation complete after 22s [id=i-0085e5d0f442f7c4f]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Ubuntu WebServer

SSH KEY PAIR ?

USER ?
SSH PORT 22 OPEN ?

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "webserver"
Description = "An NGINX WebServer on Ubuntu"

}
user_data =<<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

}
resource "aws_key_pair" "web" {

public_key = "ssh-
rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDicpU+kT9isaZy7cHYa
+oCTUolS6Tg6vCEq+ufucIMrA7RLTngi+YfTfvgrY2UiHGxuuJ1lE
yT0x2UrGexVx4G2TzX/am2WFzNbcGSg2bCXTkVQY93KOhbW9y851a
+g1wI7TODC0oxEMFr/CVsrJ4bfbp8S896VKBxC1WpSU9GscPP28GV
uDgm2ATBuL78AF root@iac-server"
}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

key_name = aws_key_pair.web.id

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

tags = {
Name = "webserver"
Description = "An Nginx WebServer on Ubuntu"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

key_name = aws_key_pair.web.id

}

Description = "An Nginx WebServer on Ubuntu"
}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
name = "ssh-access"
description = "Allow SSH access from the Internet"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}
}

}

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
name = "ssh-access"
description = "AllowSSH access from the Internet"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}
}

vpc_security_group_ids = [aws_security_group.ssh-access.id]

}

systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
public_key = file("/root/.ssh/web.pub")

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
name = "ssh-access"
description = "AllowSSH access from the Internet"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}
}

vpc_security_group_ids = [aws_security_group.ssh-access.id]

output publicip {
value = aws_instance.webserver.public_ip

}

>_

Plan: 3 to add, 0 to change, 1 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_instance.webserver: Destroying... [id=i-015b579d0ea84fbb7]
aws_key_pair.web: Creating...
aws_security_group.ssh-access: Creating...
aws_key_pair.web: Creation complete after 1s [id=terraform-
20201014034144926200000001]
aws_security_group.ssh-access: Creation complete after 1s [id=sg-
0f02f3ea92b14bed8]
aws_instance.webserver: Still destroying... [id=i-015b579d0ea84fbb7, 10s elapsed]
aws_instance.webserver: Still destroying... [id=i-015b579d0ea84fbb7, 20s elapsed]
aws_instance.webserver: Destruction complete after 30s
aws_instance.webserver: Creating...
aws_instance.webserver: Still creating... [10s elapsed]
aws_instance.webserver: Still creating... [20s elapsed]
aws_instance.webserver: Still creating... [30s elapsed]
aws_instance.webserver: Creation complete after 32s [id=i-0fd2c1c5eb0762ff5]

Apply complete! Resources: 3 added, 0 changed, 1 destroyed.
Outputs:

publicip = 3.96.203.171

$ terraform apply

>_

$ ssh -i /root/.ssh/web ubuntu@3.96.203.171

ubuntu@ip-172-31-19-161:~$

[ubuntu@ip-172-31-19-161]$ systemctl status nginx

nginx.service - A high performance web server and a reverse
proxy server

Loaded: loaded (/lib/systemd/system/nginx.service; enabled;
vendor preset: enabled)

Active: active (running) since Wed 2020-11-02 22:17:38 UTC;
2 min ago
Process: 303 ExecStart=/usr/sbin/nginx -g daemon on;

master_process on; (code=exited, status=0
Process: 264 ExecStartPre=/usr/sbin/nginx -t -q -g daemon

on; master_process on; (code=exited,
Main PID: 304 (nginx)

Terraform
Provisioners

main.tf

Provisioners

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
<< code hidden >>

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
<< code hidden >>

}

vpc_security_group_ids = [aws_security_group.ssh-access.id]

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
<< code hidden >>

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
<< code hidden >>

}

vpc_security_group_ids = [aws_security_group.ssh-access.id]

Local Machine

Remote Instance (EC2)

apt update
apt install nginx -y
systemctl enable nginx
systemctl start nginx

Remote Exec

✓ Network Connectivity (Security Group)
✓ Authentication (SSH Key Pair)

SSH WINRM

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
<< code hidden >>

}

key_name = aws_key_pair.web.id

resource "aws_security_group" "ssh-access" {
<< code hidden >>

}

vpc_security_group_ids = [aws_security_group.ssh-access.id]

Remote Exec

provisioner "remote-exec" {
inline = ["sudo apt update",

"sudo apt install nginx -y",
"sudo systemctl enable nginx",
"sudo systemctl start nginx",

]
}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
<< code hidden >>

}

key_name = aws_key_pair.web.id

vpc_security_group_ids = [aws_security_group.ssh-access.id]

Remote Exec

provisioner "remote-exec" {
inline = ["sudo apt update",

"sudo apt install nginx -y",
"sudo systemctl enable nginx",
"sudo systemctl start nginx",

]
}

connection {
type = "ssh"
host = self.public_ip
user = "ubuntu"
private_key = file("/root/.ssh/web")

}

>_

aws_key_pair.web: Creating...
aws_security_group.ssh-access: Creating...
aws_key_pair.web: Creation complete after 0s [id=terraform-
20201015013048509100000001]
aws_security_group.ssh-access: Creation complete after 1s [id=sg-0a543f25009e14628]
aws_instance.webserver: Creating...
aws_instance.webserver: Still creating... [10s elapsed]
aws_instance.webserver: Still creating... [20s elapsed]
aws_instance.webserver: Still creating... [30s elapsed]
aws_instance.webserver: Provisioning with 'remote-exec'...
aws_instance.webserver (remote-exec): Connecting to remote host via SSH...
aws_instance.webserver (remote-exec): Host: 3.96.136.157
aws_instance.webserver (remote-exec): User: ubuntu
aws_instance.webserver (remote-exec): Password: false
aws_instance.webserver (remote-exec): Private key: true
aws_instance.webserver (remote-exec): Certificate: false
aws_instance.webserver (remote-exec): SSH Agent: false
aws_instance.webserver (remote-exec): Checking Host Key: false
aws_instance.webserver: Still creating... [40s elapsed]
aws_instance.webserver (remote-exec): Connecting to remote host via SSH...
aws_instance.webserver (remote-exec): Host: 3.96.136.157
aws_instance.webserver (remote-exec): User: ubuntu
aws_instance.webserver (remote-exec): Password: false
aws_instance.webserver (remote-exec): Private key: true
aws_instance.webserver (remote-exec): Certificate: false
aws_instance.webserver (remote-exec): SSH Agent: false
aws_instance.webserver (remote-exec): Checking Host Key: false
aws_instance.webserver (remote-exec): Connected!
aws_instance.webserver: Still creating... [50s elapsed]
aws_instance.webserver: Creation complete after 50s [id=i-068fad300d9df27ac]

$ terraform apply

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

user_data = <<-EOF
#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

resource "aws_key_pair" "web" {
<< code hidden >>

}

key_name = aws_key_pair.web.id

vpc_security_group_ids = [aws_security_group.ssh-access.id]

Local Exec

provisioner "remote-exec" {
inline = ["sudo apt update",

"sudo apt install nginx -y",
"sudo systemctl enable nginx",
"sudo systemctl start nginx",

]
}

connection {
type = "ssh"
host = self.public_ip
user = "ubuntu"
private_key = file("/root/.ssh/web")

} Local Machine

Remote Instance (EC2)

echo ${aws_instance.webserver.public_ip} >> /tmp/ip.txt"

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

Local Exec

Local Machine

Remote Instance (EC2)

echo ${aws_instance.webserver.public_ip} >> /tmp/ip.txt"

provisioner "local-exec" {
command = "echo ${aws_instance.webserver2.public_ip} >> /tmp/ips.txt"

}

>_

54.214.68.27

$ cat /tmp/ips.txt

Provisioner
Behavior

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
provisioner "local-exec" {

command = "echo Instance ${aws_instance.webserver.public_ip} Created! > /tmp/instance_state.txt"
}

}

Creation Time Provisioner

>_

$ cat /tmp/instance_state.txt

Instance 3.96.136.157 Created!

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
provisioner "local-exec" {

command = "echo Instance ${aws_instance.webserver.public_ip} Created! > /tmp/instance_state.txt"
}

}

Destroy Time Provisioner

>_

$ cat /tmp/instance_state.txt

Instance 3.96.136.157 Deleted!

provisioner "local-exec" {
when = destroy
command = "echo Instance ${aws_instance.webserver.public_ip} Destroyed! > /tmp/instance_state.txt"

}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
provisioner "local-exec" {

command = "echo Instance ${aws_instance.webserver.public_ip} Created! > /tmp/instance_state.txt"
}

}

Failure Behavior

>_

$ terraform apply

provisioner "local-exec" {
when = destroy
command = "echo Instance ${aws_instance.webserver.public_ip} Destroyed! > /tmp/instance_state.txt"

}

on_failure = fail

/temp/instance_state.txt"

Error: Error running command 'echo 35.183.14.192 > /temp/pub_ip.txt': exit status 1.
Output: The system cannot find the path specified.

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
provisioner "local-exec" {

command = "echo Instance ${aws_instance.webserver.public_ip} Created! > /tmp/instance_state.txt"
}

}

Failure Behavior

>_

$ terraform apply

provisioner "local-exec" {
when = destroy
command = "echo Instance ${aws_instance.webserver.public_ip} Destroyed! > /tmp/instance_state.txt"

}

on_failure = fail

/temp/instance_state.txt"

aws_instance.webserver (local-exec) The system cannot find the path specified.
aws_instance.project: Creation complete after 22s [id=i-01585c2b9dbc445db]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

on_failure = continue

Considerations with
Provisioners

SSH/ WinRM
Local Machine

EC2 Instance

No Provisioner Information in Plan

Network Connectivity and Authentication

Local-Exec | Remote-Exec

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "webserver"
Description = "An NGINX WebServer on Ubuntu"

}
provisioner "remote-exec" {
inline = ["echo $(hostname -i) >> /tmp/ips.txt"]

}
}

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "webserver"
Description = "An NGINX WebServer on Ubuntu"

}

}

Provider Resource Option

AWS aws_instance user_data

Azure azurrerm_virtual_machine custom_data

GCP google_compute_instance meta_data

Vmware vSphere vsphere_virtual_machine user_data.txt
user_data = <<-EOF

#!/bin/bash
sudo apt update
sudo apt install nginx -y
systemctl enable nginx
systemctl start nginx
EOF

main.tf

resource "aws_instance" "webserver" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "webserver"
Description = "An NGINX WebServer on Ubuntu"

}
}

"ami-XYZ"

Custom AMI with NGINX

nginx-build.json

Terraform Taint

>_

main.tf

resource "aws_instance" "webserver-3" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
key_name = "ws"
provisioner "local-exec" {

}

Plan: 1 to add, 0 to change, 0 to destroy.

aws_instance.webserver: Creating...
aws_instance.webserver: Still creating... [10s elapsed]
aws_instance.webserver: Still creating... [20s elapsed]
aws_instance.webserver: Still creating... [30s elapsed]
aws_instance.webserver: Provisioning with 'local-exec'...
aws_instance.webserver (local-exec): Executing: ["cmd" "/C" "echo 35.183.14.192 > /temp/pub_ip.txt"]
aws_instance.webserver (local-exec): The system cannot find the path specified.

Error: Error running command 'echo 35.183.14.192 > /temp/pub_ip.txt': exit status 1. Output: The system
cannot find the path specified.

$ terraform apply

Taint

command = "echo ${aws_instance.webserver-3.public_ip} > /temp/pub_ip.txt"

>_

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not
be
persisted to local or remote state storage.

aws_instance.webserver: Refreshing state... [id=i-0dba2d5dc22a9a904]

-

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

aws_instance.webserver is tainted, so must be replaced
-/+ resource "aws_instance" "webserver-3" {

$ terraform plan

Taint

>_

Resource instance aws_instance.webserver has been marked as tainted.

$ terraform taint aws_instance.webserver

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_instance.webserver: Refreshing state... [id=i-0fd3946f5b3ab8af8]

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
-/+ destroy and then create replacement

Terraform will perform the following actions:

aws_instance.webserver is tainted, so must be replaced
-/+ resource "aws_instance" "webserver" {

$ terraform plan

Local Machine
EC2 Instance

nginx v1.16

Taint

>_

Resource instance aws_instance.webserver has been successfully
untainted.

$ terraform untaint aws_instance.webserver

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_instance.webserver: Refreshing state... [id=i-0fd3946f5b3ab8af8]

--

No changes. Infrastructure is up-to-date.

This means that Terraform did not detect any differences between your
configuration and real physical resources that exist. As a result, no
actions need to be performed.

$ terraform plan

Taint

Local Machine
EC2 Instance

nginx v1.16

Debugging

>_

INFO

WARNING

ERROR

DEBUG

TRACE

export TF_LOG=<log_level>

$ export TF_LOG=TRACE

Log Levels

>_

2020/10/18 22:08:30 [INFO] Terraform version: 0.13.0
2020/10/18 22:08:30 [INFO] Go runtime version: go1.14.2
2020/10/18 22:08:30 [INFO] CLI args: []string{"C:\\Windows\\system32\\terraform.exe", "plan"}
2020/10/18 22:08:30 [DEBUG] Attempting to open CLI config file: C:\Users\vpala\AppData\Roaming\terraform.rc
2020/10/18 22:08:30 [DEBUG] File doesn't exist, but doesn't need to. Ignoring.
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory terraform.d/plugins
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory C:\Users\vpala\AppData\Roaming\terraform.d\plugins
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory
C:\Users\vpala\AppData\Roaming\HashiCorp\Terraform\plugins
2020/10/18 22:08:30 [INFO] CLI command args: []string{"plan"}
2020/10/18 22:08:30 [WARN] Log levels other than TRACE are currently unreliable, and are supported only for backward
compatibility.
Use TF_LOG=TRACE to see Terraform's internal logs.

2020/10/18 22:08:30 [DEBUG] New state was assigned lineage "f413959c-538a-f9ce-524e-1615073518d4"
2020/10/18 22:08:30 [DEBUG] checking for provisioner in "."
2020/10/18 22:08:30 [DEBUG] checking for provisioner in "C:\\Windows\\system32"
2020/10/18 22:08:30 [INFO] Failed to read plugin lock file .terraform\plugins\windows_amd64\lock.json: open
.terraform\plugins\windows_amd64\lock.json: The system cannot find the path specified.
2020/10/18 22:08:30 [INFO] backend/local: starting Plan operation
2020-10-18T22:08:30.625-0400 [INFO] plugin: configuring client automatic mTLS
2020-10-18T22:08:30.646-0400 [DEBUG] plugin: starting plugin:
path=.terraform/plugins/registry.terraform.io/hashicorp/aws/3.11.0/windows_amd64/terraform-provider-aws_v3.11.0_x5.exe
args=[.terraform/plugins/registry.terraform.io/hashicorp/aws/3.11.0/windows_amd64/terraform-provider-aws_v3.11.0_x5.exe]
2020-10-18T22:08:30.935-0400 [DEBUG] plugin: plugin started:
path=.terraform/plugins/registry.terraform.io/hashicorp/aws/3.11.0/windows_amd64/terraform-provider-aws_v3.11.0_x5.exe
pid=34016
2020-10-18T22:08:30.935-0400 [DEBUG] plugin: waiting for RPC address:
path=.terraform/plugins/registry.terraform.io/hashicorp/aws/3.11.0/windows_amd64/terraform-provider-aws_v3.11.0_x5.exe
2020-10-18T22:08:30.974-0400 [INFO] plugin.terraform-provider-aws_v3.11.0_x5.exe: configuring server automatic mTLS:
timestamp=2020-10-18T22:08:30.974-0400

$ terraform plan

>_

$ export TF_LOG_PATH=/tmp/terraform.log

$ unset TF_LOG_PATH

$ head -10 /tmp/terraform.logs

2020/10/18 22:08:30 [INFO] Terraform version: 0.13.0
2020/10/18 22:08:30 [INFO] Go runtime version: go1.14.2
2020/10/18 22:08:30 [INFO] CLI args: []string{"C:\\Windows\\system32\\terraform.exe",
"plan"}
2020/10/18 22:08:30 [DEBUG] Attempting to open CLI config file:
C:\Users\vpala\AppData\Roaming\terraform.rc
2020/10/18 22:08:30 [DEBUG] File doesn't exist, but doesn't need to. Ignoring.
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory
terraform.d/plugins
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory
C:\Users\vpala\AppData\Roaming\terraform.d\plugins
2020/10/18 22:08:30 [DEBUG] ignoring non-existing provider search directory
C:\Users\vpala\AppData\Roaming\HashiCorp\Terraform\plugins
2020/10/18 22:08:30 [INFO] CLI command args: []string{"plan"}

Terraform Import

AWS Management Console

EC2 DynamoDB Elastic Block Store

S3 Route 53 VPC

EC2 DynamoDB Route 53

Elastic Block StoreS3 EC2

EC2 DynamoDB Elastic Block Store

S3 Route 53 VPC

EC2 DynamoDB Route 53

Elastic Block StoreS3 EC2

>_

main.tf

.

.
data "aws_instance" "newserver" {

instance_id = "i-026e13be10d5326f7"
}
output newserver {

value = data.aws_instance.newserver.public_ip
}

$ data.aws_instance.newserver: Refreshing state... [id=i-026e13be10d5326f7]
aws_key_pair.web: Refreshing state... [id=terraform-20201015013048509100000001]
aws_security_group.ssh-access: Refreshing state... [id=sg-0a543f25009e14628]
aws_instance.webserver: Refreshing state... [id=i-068fad300d9df27ac]

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

newserver = 15.223.1.176

$ terraform apply

Data Source

>_

$ terraform import aws_instance.webserver-2 i-026e13be10d5326f7

Error: resource address "aws_instance.webserver-2" does not exist
in the configuration.

Before importing this resource, please create its configuration in
the root module. For example:

resource "aws_instance" "webserver-2" {
(resource arguments)

}

Terraform Import

terraform import <resource_type>.<resource_name> <attribute>

main.tf

resource "aws_instance" "webserver-2" {
(resource arguments)

}

>_

$ terraform import aws_instance.webserver-2 i-026e13be10d5326f7

aws_instance.webserver-2: Importing from ID "i-026e13be10d5326f7"...
aws_instance.webserver-2: Import prepared!

Prepared aws_instance for import
aws_instance.webserver-2: Refreshing state... [id=i-026e13be10d5326f7]

Import successful!

The resources that were imported are shown above. These resources are now in
your Terraform state and will henceforth be managed by Terraform.

Terraform Import

terraform.tfstate

{
"mode": "managed",
"type": "aws_instance",
"name": "webserver-2",
"provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
"instances": [

{
"schema_version": 1,
"attributes": {

"ami": "ami-0edab43b6fa892279",
"instance_state": "running",
"instance_type": "t2.micro",
"key_name": "ws",
.
"tags": {

"Name": "old-ec2"
},
.
.
"vpc_security_group_ids": [

"sg-8064fdee"
]

},
.
.

}
]

},

main.tf

resource "aws_instance" "webserver-2" {

}

>_

ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
key_name = "ws"
vpc_security_group_ids = ["sg-8064fdee"]

$ terraform plan

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_instance.webserver-2: Refreshing state... [id=i-0d7c0088069819ff8]

--

No changes. Infrastructure is up-to-date.

This means that Terraform did not detect any differences between your
configuration and real physical resources that exist. As a result, no
actions need to be performed

Terraform Modules

aws_iam_policy

aws_instance

aws_s3_bucket

aws_dynamodb_table

sss

resource "aws_instance" "weberver" {
configuration here

}

resource "aws_key_pair" "key" {
configuration here

}

resource "aws_security_group" "ssh-access" {
configuration here

}

resource "aws_s3_bucket" "data-bucket" {
configuration here

}

resource "aws_instance" "web-server-2" {
configuration here

}

resource "aws_dynamodb_table" "user-data" {
configuration here

}

aws_key_pair

aws_instance

main.tf

sss

main.tf

resource "aws_instance" "webserver" {
configuration here

}

key_pair.tf

resource "aws_key_pair" "web" {
configuration here

}

security_group.tf

resource "aws_security_group" "ssh-access" {
configuration here

}

s3_bucket.tf

resource "aws_s3_bucket" "terraform-state"
configuration here

}

dynamodb_table.tf

resource "aws_dynamodb_table" "state-locking" {
configuration here

}

ec2_instance.tf

resource "aws_instance" "webserver-2" {
configuration here

}

>_

provider.tf
id_rsa
id_rsa.pub
main.tf
pub_ip.txt
terraform.tfstate.backup
terraform.tfstate
iam_roles.tf
iam_users.tf
security_groups.tf
variables.tf
outputs.tf
s3_buckets.tf
dynamo_db.tf
local.tf

$ ls Complex Configuration

Files

Duplicate Code

Increased Risk

Limits Reusability

sss

variables.tf

sss

main.tf

>_

main.tf variables.tf

$ ls /root/terraform-projects/aws-instance

resource "aws_instance" "webserver" {
ami = var.ami
instance_type = var.instance_type
key_name = var.key

}

variable ami {
type = string
default = "ami-0edab43b6fa892279"
description = "Ubuntu AMI ID in the ca-

central-1 region"
}

Root Module

/root

terraform-projects

aws-instance

Root

Module

>_

$ mkdir /root/terraform-projects/development

main.tf

Root Module

main.tf

module "dev-webserver" {
source = "../aws-instance"

}

/root

terraform-projects

aws-instance

Root

Module

development

>_

$ mkdir /root/terraform-projects/development

main.tf

Root Module

main.tf

module "dev-webserver" {
source = "../aws-instance"

}

/root

terraform-projects

aws-instance development

Root

Module

Child

Module

/root

terraform-projects

aws-instance development

Root

Module

Child

Module

>_

$ mkdir /root/terraform-projects/development

main.tf

main.tf

module "dev-webserver" {
source = "../aws-instance"

}

Creating and Using
a Module

aws_dynamodb_table
(payroll_data)

aws_s3_bucket
(paystub_upload)

*flexIt-payroll-alpha-2201c

*Simplified Architecture
*Default VPC &subnet /No endpoint considerations
*No IAM role considerations

aws_instance
(payroll_app_server)

http-access-sg

default-vpc

sss

app_server.tf

resource "aws_instance" "app_server" {
ami = var.ami
instance_type = "t2.medium"
tags = {

Name = "${var.app_region}-app-server"
}
depends_on = [aws_dynamodb_table.payroll_db,

aws_s3_bucket.payroll_data
]

}

s3_bucket.tf

resource "aws_s3_bucket" "payroll_data" {
bucket = "${var.app_region}-${var.bucket}"

}

dynamodb_table.tf
resource "aws_dynamodb_table" "payroll_db" {

name = "user_data"
billing_mode = "PAY_PER_REQUEST"
hash_key = "EmployeeID"

attribute {
name = "EmployeeID"
type = "N"

}
}

>_

$ mkdir /root/terraform-projects/modules/payroll-app

app_server.tf dynamodb_table.tf s3_bucket.tf variables.tf /root

terraform-projects

payroll-ap

modules

sss

variables.tf

variable "app_region" {
type = string

}
variable "bucket" {

default = "flexit-payroll-alpha-22001c"
}
variable "ami" {

type = string
}

/root

terraform-projects

payroll-ap

modules

>_

$ mkdir /root/terraform-projects/us-payroll-app

main.tf provider.tf

sss

main.tf

module "us_payroll" {
source = "../modules/payroll-app"

}

app_region = "us-east-1"
ami = "ami-24e140119877avm"

/root

terraform-projects

payroll-ap

modules us-payroll-app

>_

Initializing modules...
- us_payroll in .terraform/modules/us_payroll

Initializing the backend...

Initializing provider plugins...
- Finding latest version of hashicorp/aws...
- Installing hashicorp/aws v3.11.0...
- Installed hashicorp/aws v3.11.0 (signed by HashiCorp)

The following providers do not have any version constraints in
configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain
breaking
changes, we recommend adding version constraints in a required_providers
block
in your configuration, with the constraint strings suggested below.

* hashicorp/aws: version = "~> 3.11.0"

Terraform has been successfully initialized!

$ terraform init

>_

.

.

Terraform will perform the following actions:

module.us_payroll.aws_dynamodb_table.payroll_db will be created
+ resource "aws_dynamodb_table" "payroll_db" {

+ arn = (known after apply)
+ billing_mode = "PAY_PER_REQUEST"
+ hash_key = "EmployeeID"
+ name = "user_data"

.

.
module.us_payroll.aws_instance.app_server will be created
+ resource "aws_instance" "app_server" {

+ ami = "ami-24e140119877avm"
+ instance_type = "t2.medium“

.

.
+ resource "aws_s3_bucket" "payroll_data" {

+ acceleration_status = (known after apply)
+ acl = "private"
+ arn = (known after apply)
+ bucket = "us-east-1-flexit-payroll-alpha-22001c"

Enter a value: yes

module.us_payroll.aws_dynamodb_table.payroll_db: Creating...
module.us_payroll.aws_s3_bucket.payroll_data: Creating...
module.us_payroll.aws_dynamodb_table.payroll_db: Creation complete after 1s [id=user_data]

$ terraform apply

/root

terraform-projects

payroll-ap

modules uk-payroll-appus-payroll-app

>_

$ mkdir /root/terraform-projects/uk-payroll-app

main.tf provider.tf

sss

main.tf

module "uk_payroll" {
source = "../modules/payroll-app"

}

provider "aws" {
region = "eu-west-2"

}

provider.tf

app_region = "eu-west-2"
ami = "ami-35e140119877avm"

>_

.

.

Terraform will perform the following actions:

module.us_payroll.aws_dynamodb_table.payroll_db will be created
+ resource "aws_dynamodb_table" "payroll_db" {

+ arn = (known after apply)
+ billing_mode = "PAY_PER_REQUEST"
+ hash_key = "EmployeeID"
+ name = "user_data"

.

.
module.us_payroll.aws_instance.app_server will be created
+ resource "aws_instance" "app_server" {

+ ami = "ami-35e140119877avm"
+ instance_type = "t2.medium"

.

.
+ resource "aws_s3_bucket" "payroll_data" {

+ acceleration_status = (known after apply)
+ acl = "private"
+ arn = (known after apply)
+ bucket = "eu-west-2-flexit-payroll-alpha-22001c"

Enter a value: yes

module.us_payroll.aws_dynamodb_table.payroll_db: Creating...
module.us_payroll.aws_s3_bucket.payroll_data: Creating...
module.us_payroll.aws_dynamodb_table.payroll_db: Creation complete after 1s [id=user_data]
module.us_payroll.aws_s3_bucket.payroll_data: Creation complete after 1s [id=us-east-1-flexit-payroll-alpha-

$ terraform apply

.

.

Terraform will perform the following actions:

module.us_payroll.aws_dynamodb_table.payroll_db will be created
+ resource "aws_dynamodb_table" "payroll_db" {

+ arn = (known after apply)
+ billing_mode = "PAY_PER_REQUEST"
+ hash_key = "EmployeeID"
+ name = "user_data"

.

.
module.us_payroll.aws_instance.app_server will be created
+ resource "aws_instance" "app_server" {

+ ami = "ami-35e140119877avm"
+ instance_type = "t2.medium"

$ terraform apply

Simpler Configuration Files

Lower Risk

Re-Usability

Standardized Configuration

sss

main.tf

module "us_payroll" {
source = "../modules/payroll-app"
app_region = "eu-west-2“
ami = "ami-35e140119877avm"

}

/root

terraform-projects

payroll-ap

modules uk-payroll-appus-payroll-app

Using Modules
from Registry

main.tf

https://registry.terraform.io/browse/modules

module "dev-webserver" {

source = "../aws-instance/"

key = "webserver"
}

Local Module

Terraform Registry

Terraform Module

Terraform Module

>_

main.tf

https://registry.terraform.io/modules/terraform-aws-modules/security-group/aws/latest/submodules/ssh

module "security-group_ssh" {
source = "terraform-aws-modules/security-group/aws/modules/ssh"

}

Downloading terraform-aws-modules/security-group/aws 3.16.0 for security-group_ssh...
- security-group_ssh in .terraform\modules\security-group_ssh\modules\ssh

$ terraform get

version = "3.16.0"
insert the 2 required variables here
vpc_id = "vpc-7d8d215"
ingress_cidr_blocks = ["10.10.0.0/16"]
name = "ssh-access"

Terraform
Functions

main.tf

>_

file("/root/terraform-projects/main.tf)

$ terraform console

main.tf

resource "aws_iam_policy" "adminUser" {
name = "AdminUsers"
policy = file("admin-policy.json")

}

resource "local_file" "pet" {
filename = var.filename
count = length(var.filename)

}

resource "local_file" "pet" {
filename = var.filename

}

for_each = toset(var.region)

variable region {
type = list
default = ["us-east-1",

"us-east-1",
"ca-central-1"]

description = "A list of AWS Regions"
}

resource "aws_instance" "development" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"

}

> length(var.region)

3

> toset(var.region)

[
"ca-central-1",
"us-east-1",

]
>

>

Functions

Numeric Functions

String Functions

Collection Functions

Type Conversion

Functions

Functions

>_variables.tf

> max (-1, 2, -10, 200, -250)
200

> min (-1, 2, -10, 200, -250)
-250

> max(var.num...)
250

> ceil(10.1)
11

> ceil(10.9)
11

> floor(10.1)
10

> floor(10.9)
10

variable "num" {
type = set(number)
default = [250, 10, 11, 5]
description = "A set of numbers"

}

Numeric Functions

$ terraform console

>_variables.tf

> split(",", "ami-xyz,AMI-ABC,ami-efg")
["ami-xyz","AMI-ABC","ami-efg"]

> split(",", var.ami)
["ami-xyz","AMI-ABC","ami-efg“]

> lower(var.ami)
ami-xyz,ami-abc,ami-efg

> upper(var.ami)
AMI-XYZ,AMI-ABC,AMI-EFG

> title(var.ami)
Ami-Xyz,AMI-ABC,Ami-Efg

> substr(var.ami, 0, 7)
ami-xyz

> substr(var.ami, 8, 7)
AMI-ABC

> substr(var.ami, 16, 7)
ami-efg

$ terraform console
variable "ami" {

type = string
default = "ami-xyz,AMI-ABC,ami-efg"
description = "A string containing ami ids"

}

String Functions

>_variables.tf

> join(",", ["ami-xyz", "AMI-ABC", "ami-efg"])
ami-xyz,AMI-ABC,ami-efg

> join(",", var.ami)
ami-xyz,AMI-ABC,ami-efg

$ terraform console
variable "ami" {

type = list
default = ["ami-xyz", "AMI-ABC", "ami-efg"]

description = "A list of numbers"
}

String Functions

>_variables.tf

> length(var.ami)
3

> index(var.ami, "AMI-ABC")
1

> element(var.ami,2)
ami-efg

> contains(var.ami, "AMI-ABC")
true

> contains(var.ami, "AMI-XYZ")
false

$ terraform console
variable "ami" {

type = list
default = ["ami-xyz", "AMI-ABC", "ami-efg"]

description = "A list of numbers"
}

Collection Functions

>_variables.tf

> keys(var.ami)
[

"ap-south-1",
"ca-central-1",
"us-east-1",

]

> values(var.ami)
[

"ami-ABC",
"ami-efg",
"ami-xyz",

]

> lookup(var.ami, "ca-central-1")
ami-efg

$ terraform console
variable "ami" {

type = map
default = { "us-east-1" = "ami-xyz",

"ca-central-1" = "ami-efg",
"ap-south-1" = "ami-ABC"

}
description = "A map of AMI ID's for specific regions"

}

Map Functions

>_variables.tf

> lookup(var.ami, "us-west-2")
Error: Error in function call

on <console-input> line 1:
(source code not available)

|----------------
| var.ami is map of string with 3 elements

Call to function "lookup" failed: lookup failed
to find 'us-west-2’.

> lookup (var.ami, "us-west-2", "ami-pqr")
ami-pqr

$ terraform console
variable "ami" {

type = map
default = { "us-east-1" = "ami-xyz",

"ca-central-1" = "ami-efg",
"ap-south-1" = "ami-ABC"

}
description = "A map of AMI ID's for specific regions"

}

Map Functions

Operators &
Conditional
Expressions

>_

$ terraform console

> 1 + 2
3

> 5 - 3
2

> 2 * 2
4

> 8 / 2
4

Numeric Operators

>_

Equality Operators

> 8 == 8
true

8 == 7
false

> 8 != "8"
true

$ terraform console

>_

Comparison Operators

> 5 > 7
false

> 5 > 4
true

> 5 > 5
False

> 5 >= 5
true

> 4 < 5
true

> 3 <= 4
true

$ terraform console

>_

Logical Operators

> 8 > 7 && 8 < 10
true

> 8 > 10 && 8 < 10
false

> 8 > 9 || 8 < 10
True

> var.special
true

> ! var.special
false

> ! (var.b > 30)
true

variables.tf

variable b {
type = number
default = 25

}

variable special {
type = bool
default = true
description = "Set to true to

use special characters"
}

$ terraform console

>_

Logical Operators

> var.a > var.b
true

> var.a < var.b
false

> var.a + var.b
75

variables.tf

variable a {
type = number
default = 50

}
variable b {

type = number
default = 25

}

$ terraform console

main.tf

resource "random_password" "password-generator" {
length = ?

}

variables.tf

variable length {
type = number
description = "The length of the password"

}

var.length

output password {
value = random_password.password-generator.result

}

>_

random_password.password-generator: Creating...
random_password.password-generator: Creation
complete after 0s [id=none]

Apply complete! Resources: 1 added, 0 changed, 0
destroyed.

Outputs:

password = sjsrW]

$ terraform apply -var=length=5 -auto-approve

$ if [$length -lt 8]
then

length=8;
echo $length;

else
echo $length;

fi
Generate Password

Condition

If True

If False

main.tf

resource "random_password" "password-generator" {
length = ?

}

variables.tf

variable length {
type = number
description = "The length of the password"

}

var.length

output password {
value = random_password.password-generator.result

}

$ if [$length -lt 8]
then

length=8;
echo $length;

else
echo $length;

fi
Generate Password

Condition

If True

If False

var.length < 8 ? 8 : var.length

condition If True If False

condition ? true_val : false_val

>_

Terraform will perform the following actions:

random_password.password-generator will be created
+ resource "random_password" "password-generator" {

+ id = (known after apply)
+ length = 8

.
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:
password = &(1Beiaq

$ terraform apply -var=length=5

Terraform will perform the following actions:

random_password.password-generator must be replaced
-/+ resource "random_password" "password-generator" {

~ id = "none" -> (known after apply)
~ length = 8 -> 12 # forces replacement.

.
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

password = 8B@o}{cUzrZ7

$ terraform apply -var=length=12

Terraform
Workspaces

Real World Infrastructure terraform.tfstate

main.tf

resource "aws_instance" "projectA" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "ProjectA"
}

}

main.tf

resource "aws_instance" "projectB" {
ami = "ami-0c2f25c1f66a1ff4d"
instance_type = "t2.micro"
tags = {

Name = "ProjectB"
}

}

my-application

variables.tf

terraform.tfstate

main.tf

/root/terraform-projects/projectA

my-application

variables.tf

terraform.tfstate

main.tf

/root/terraform-projects/projectB

main.tf

resource "aws_instance" "projectA" {
ami = "ami-0edab43b6fa892279"
instance_type = "t2.micro"
tags = {

Name = "ProjectA"
}

}

my-application

variables.tf

terraform.tfstate

main.tf

/root/terraform-projects/project

ProjectA

ProjectB

Workspace

>_

Created and switched to workspace "ProjectA"!

You're now on a new, empty workspace. Workspaces isolate their state,
so if you run "terraform plan" Terraform will not see any existing state
for this configuration.

$ terraform workspace new ProjectA

default
* ProjectA

$ terraform workspace list

Workspace

main.tf

resource "aws_instance" "projectA" {
ami = " "
instance_type = " "
tags = {

Name = " "
}

}

my-application

variables.tf

terraform.tfstate

main.tf

/root/terraform-projects/project

ProjectA

ProjectB

Region: ca-central-1

AMI: ami-0edab43b6fa892279

Instance Type: t2.micro

Region: ca-central-1

AMI: ami-0c2f25c1f66a1ff4d

Instance Type: t2.micro

variables.tf

variable region {
default = "ca-central-1"

}
variable instance_type {

default = "t2.micro"
}
variable ami {

type = map
default = {

"ProjectA" = "ami-0edab43b6fa892279",
"ProjectB" = "ami-0c2f25c1f66a1ff4d"

}
}

main.tf

resource "aws_instance" "projectA" {
ami = " "
instance_type = " "
tags = {

Name = " "
}

}

my-application

variables.tf

terraform.tfstate

main.tf

/root/terraform-projects/project

ProjectA

ProjectB

Region: ca-central-1

AMI: ami-0edab43b6fa892279

Instance Type: t2.micro

Region: ca-central-1

AMI: ami-0c2f25c1f66a1ff4d

Instance Type: t2.micro

variables.tf

variable region {
default = "ca-central-1"

}
variable instance_type {

default = "t2.micro"
}
variable ami {

type = map
default = {

"ProjectA" = "ami-0edab43b6fa892279",
"ProjectB" = "ami-0c2f25c1f66a1ff4d"

}
}

var.instance_type

terraform.workspace

lookup(var.ami, terraform.workspace)

>_

> terraform.workspace
ProjectA

> lookup(var.ami, terraform.workspace)
ami-0edab43b6fa892279

$ terraform console

>_

Terraform will perform the following actions:

aws_instance.project will be created
+ resource "aws_instance" "project" {

+ ami = "ami-0edab43b6fa892279"
+ instance_type = "t2.micro"
+ tags = {

+ "Name" = "ProjectA"
}

.

.

.

$ terraform plan

Created and switched to workspace "ProjectB"!

You're now on a new, empty workspace. Workspaces isolate their state,
so if you run "terraform plan" Terraform will not see any existing state
for this configuration.

$ terraform workspace new ProjectB

>_

Terraform will perform the following actions:

aws_instance.project will be created
+ resource "aws_instance" "project" {

+ ami = "ami-0c2f25c1f66a1ff4d"
+ instance_type = "t2.micro"
+ tags = {

+ "Name" = "ProjectB"
}

.

.

.

$ terraform plan

Switched to workspace "ProjectA".

$ terraform workspace select ProjectA

>_

main.tf provider.tf terraform.tfstate.d variables.tf

$ ls

terraform.tfstate.d/
|-- ProjectA
| `-- terraform.tfstate
`-- ProjectB

`-- terraform.tfstate

2 directories, 2 files

$ tree terraform.tfstate.d/

